Inferring computational dynamics from neural measurements using deep recurrent neural networks
使用深度循环神经网络从神经测量中推断计算动力学
基本信息
- 批准号:406070939
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In theoretical neuroscience, computational processes in the brain are often thought to be implemented in terms of the underlying stochastic neural system dynamics. Cognitive processes like working memory, decision making, interval timing, or thought sequences, have been described in terms of attractor states, probabilistic transitions between these, slow transients, or chains of saddle nodes, for instance. Consequently, from this point of view, for understanding the neural basis of cognition one should unravel the neural system dynamics that underlies behavioral performance and neural activity. However, neural dynamics are not directly observable but have to be inferred from a limited and noisy set of physiological measurements that usually probe only a few of the system’s degrees of freedom. It would therefore be of great value if one had methodological tools for (automatically) recovering the underlying neural dynamics from such ‘sparse’ physiological measurements. The central goal of the present proposal is to develop and validate such methods based on deep recurrent neural networks (RNN), and probe them on neurophysiological data.We have previously used a combination of delay embeddings and nonlinear basis expansions to extract from multiple single-unit (MSU) recordings essential dynamical properties and aspects of the flow, like convergence to putative semi-attracting states. More recently, we have developed a framework for statistical estimation of RNN models from experimental data. RNNs are computationally and dynamically universal in the sense that they can emulate and approximate any dynamical system, thus, in theory, are powerful enough to represent whatever neural dynamics and computational processes underlie the observed neural activity and behavior.Based on this previous and preliminary work, here we will tackle a number of important open issues: 1) Existing methods for statistical inference of (deep) RNN models do not scale very well with system size, yet this is very important for achieving good approximations to the dynamics and dealing with larger physiological data sets. Here we suggest several lines of methodological improvement. 2) More importantly, a systematic validation and comparison of various model architectures and training/inference algorithms on ground truth systems of differing biophysical complexity is still lacking, especially for experimentally realistic scenarios with comparatively sparse data from high-dimensional systems, which were only partially observed, and with high levels of both system-intrinsic and measurement noise. 3) As a case study for the usefulness of such methods, we will re-analyze MSU recordings from rat prefrontal cortex and hippocampus obtained during two different working memory tasks, to address specific issues about the (coupled) dynamics of these areas that were beyond the realm of previous analysis tools.
在理论上的神经科学中,通常认为大脑中的计算过程是根据潜在的随机神经元系统动力学来实现的。例如,已经用吸引子状态,这些概率过渡,缓慢的过渡或马鞍节点的链条来描述认知过程,诸如工作记忆,决策时间,间隔时间或思想序列。因此,从这个角度来看,为了理解认知的神经元基础,应阐明行为性能和神经元活性的基础的神经元系统动力学。但是,神经动力学不是直接观察到的,而必须从有限的噪音集合中推断出,通常只探测系统的自由度的少数。因此,如果一个方法学工具(自动)从这种“稀疏”物理测量中恢复了基本的神经元动力学,那将具有很大的价值。 The central goal of the present proposal is to develop and validate such methods based on deep recurrent neuronal networks (RNN), and probe them on neurophysiological data.We have previously used a combination of delay embeddings and nonlinear basis expansions to extract from multiple single-unit (MSU) recordings essential dynamic properties and aspects of the flow, like convergence to putative semi-attracting states.最近,我们开发了一个从实验数据中对RNN模型进行统计估算的框架。 RNN在计算和动态上是普遍的,因为它们可以仿真并近似任何动态系统,因此,从理论上讲,它足以代表任何神经动态和计算过程,这是观察到的神经活动和行为的基础。基于此之前的这项和初步的工作,基于这一和初步的工作。实现良好的近似动力学并处理较大的物理数据集。在这里,我们建议几条方法学改进。 2)更重要的是,仍然缺乏对各种模型体系结构的系统验证和比较,以及在地面真实系统上具有区分生物物理复杂性的地面真实系统的训练/推理算法,尤其是对于实验性现实的情景,来自高维系统的相对稀疏的数据,仅观察到高维系统的相对稀疏的数据,这些数据仅是部分观察到的,并且具有高水平的系统intertrinsic and Insertrinsic and Inertrinsic sistinsic和sermesurement siseur nose。 3)作为此类方法有用性的案例研究,我们将重新分析来自在两个不同的工作记忆任务中获得的大鼠前额叶皮层和海马的MSU记录,以解决有关这些领域(耦合)动态的特定问题,这些问题超出了先前分析工具的领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Daniel Durstewitz其他文献
Professor Dr. Daniel Durstewitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Daniel Durstewitz', 18)}}的其他基金
Anpassung neuronaler Dynamiken an kognitive Erfordernisse - Dopaminerge Kontrolle kortikaler Aktivitätsregime
神经元动力学适应认知需求——皮质活动状态的多巴胺能控制
- 批准号:
166342266 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Heisenberg Professorships
Anpassung neuronaler Dynamiken an kognitive Erfordernisse - Dopaminerge Kontrolle kortikaler Aktivitätsregime
神经元动力学适应认知需求——皮质活动状态的多巴胺能控制
- 批准号:
80319670 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Anpassung neuronaler Dynamiken an kognitive Erfordernisse - Dopaminerge Kontrolle kortikaler Aktivitätsregime
神经元动力学适应认知需求——皮质活动状态的多巴胺能控制
- 批准号:
80299517 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Heisenberg Fellowships
Neural mechanisms of planning and problem solving in prefrontal cortex
前额叶皮层规划和解决问题的神经机制
- 批准号:
5288358 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Neural mechanisms of working memory in the prefrontal cortex and their regulation by dopamine
前额皮质工作记忆的神经机制及其多巴胺的调节
- 批准号:
5206292 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Fellowships
Reconstructing neuro-dynamical principles of prefrontal cortical computations across cognitive tasks and species
重建跨认知任务和物种的前额皮质计算的神经动力学原理
- 批准号:
465072828 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Theoretical framework and bifurcation analysis for deep recurrent neural networks inferred from neural measurements
从神经测量推断的深度循环神经网络的理论框架和分岔分析
- 批准号:
502196519 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
有限面积起爆钝感炸药反应动力学计算方法和衍射参数研究
- 批准号:12372343
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
Mg-Gd-Y体系中复杂析出过程的动力学计算
- 批准号:52371010
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
刚柔耦合多体系统接触/碰撞/摩擦多尺度动力学快速仿真计算方法
- 批准号:12302042
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
第二十一届全国凝聚态理论与统计物理学术会议
- 批准号:12342018
- 批准年份:2023
- 资助金额:8.00 万元
- 项目类别:专项项目
不同拓扑结构的半刚性聚电解质在离子溶液中的构象和动力学行为的计算机模拟
- 批准号:22363005
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
- 批准号:
10092420 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
- 批准号:
BB/Y00180X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
- 批准号:
2347497 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
- 批准号:
BB/Y002466/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant