Self-Powered, Hybrid Triboelectric-Piezoresistive Tactile Sensor array-based Artificial Skin for Soft Robots
用于软体机器人的基于自供电、混合摩擦电压阻式触觉传感器阵列的人造皮肤
基本信息
- 批准号:404941515
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The first round of the SPP2100 proposal entitled, “Ultrasoft Long-Range Strain and Self-Powered Touch sensors for Soft Robotic Segments” was focused on developing multifunctional crosslinked rubber-based inexpensive solutions for piezoresistive and triboelectric tactile sensing prototypes and subsequent integration into soft robotic components. In the second phase, we aim to move further ahead with the results extracted from the first phase. The ultrasensitive triboelectric tactile sensor is shown to perceive of a mild touch and this can be further manipulated by additional topographical functionalization. We propose to develop and design functional, commercial rubber substrates by incorporating chemical engineering on the surface, additive manufacturing methods, self-healable properties and transfer-printing of the elastomer for highly sensitive triboelectric and piezoresistive sensing solutions. For the soft robotic applications, piezoresistive sensors with high repeatability and reproducibility are particularly considered. Herein, for the first time, we propose to achieve desired performance with excellent sensitivity by incorporating vacuum-metal layer deposited stretchable interconnector-based strain sensors. Furthermore, instead of single sensor, we aim to fabricate hybrid tactile sensing array-based artificial skins that are ultrastretchable, durable and multi-stimuli responsive with high spatiotemporal resolution. The proposed skin-mimicking tactile module can offer high reproducibility with larger surface coverage on soft robots and record complex tactile information by producing varied electrical voltage signal as a function of vibration, touch or force. Furthermore, the embedded e-skin can also exhibit self-powered characteristic as triboelectric tactile module is expected to produce output current (in microamps) upon contact friction that would be sufficient for running small intensity sensors and arrays. In addition, our objective will also be to integrate self-healing functionality to rubber-based touch and force sensors for long term, all-weather operability and longevity. Finally, current proposal will strongly encourage cumulative development and multilateral research outcome in terms of complex data processing that will be analyzed by collaborative developments of neural network-based machine learning algorithms and computational modelling studies offered by fellow SPP2100 co-contributors. The present proposal involving the development of artificial skin for soft robotic components and signal processing by computational methods, therefore, emphasize particularly on strong collaborative outcomes within the SPP2100 framework in terms of interdisciplinary overlap between e-skin, soft robotics and machine learning.
SPP2100 提案的第一轮题为“用于软机器人部分的超软远程应变和自供电触摸传感器”,重点是开发用于压阻和摩擦电触觉传感原型的多功能交联橡胶基廉价解决方案,以及随后集成到软机器人中在第二阶段,我们的目标是进一步推进第一阶段提取的结果,超灵敏摩擦电触觉传感器可以感知。我们建议通过在表面上结合化学工程、增材制造方法、自修复特性和弹性体的转印来开发和设计功能性商业橡胶基材,以实现高灵敏度。对于软机器人应用,特别考虑了具有高重复性和再现性的摩擦电和压阻传感解决方案。在此,我们首次建议通过结合来实现具有出色灵敏度的所需性能。此外,我们的目标是制造基于混合触觉传感阵列的人造皮肤,该皮肤具有超拉伸性、耐用性和高时空分辨率的多刺激响应能力。模仿触觉模块可以在软机器人上提供更大的表面覆盖率,并通过产生作为振动、触摸或力的函数的变化电压信号来记录复杂的触觉信息。电子皮肤还可以表现出自供电特性,因为摩擦电触觉模块预计会在接触摩擦时产生足以运行小强度传感器和阵列的输出电流(以微安为单位)。此外,我们的目标还包括集成自供电特性。 -基于橡胶的触摸和力传感器的修复功能,以实现长期、全天候的可操作性和寿命。最后,当前的提案将大力鼓励复杂数据处理方面的累积开发和多边研究成果,这些数据将通过神经网络的协作开发进行分析。基于网络的SPP2100 共同贡献者提供的机器学习算法和计算建模研究涉及提议开发用于软机器人组件的人造皮肤以及通过计算方法进行信号处理,因此,特别强调 SPP2100 框架内的强大协作成果。电子皮肤、软机器人和机器学习之间的跨学科重叠。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Amit Das其他文献
Dr. Amit Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
新能源广域接入融通型牵引供电系统的全域能量优化调度方法研究
- 批准号:52377124
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于精准建模的高速列车供电系统EMI预警与主动抑制方法研究
- 批准号:52377173
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
人工蛛丝自供电仿生微针的构建及在伤口管理中的作用机制研究
- 批准号:32371435
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向远程康复监测的自供电织物型人体微网技术研究
- 批准号:62311530102
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
供电子基-O-O-插层改性层状钛酸的离子交换特性与机制研究
- 批准号:52372288
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A Universal Energy Harvesting Platform Based on Hybrid organic-inorganic Composite Nanomaterial to Realize Self-powered Wireless Sensing Systems
基于杂化有机-无机复合纳米材料的通用能量收集平台,实现自供电无线传感系统
- 批准号:
555763-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
A Universal Energy Harvesting Platform Based on Hybrid organic-inorganic Composite Nanomaterial to Realize Self-powered Wireless Sensing Systems
基于杂化有机-无机复合纳米材料的通用能量收集平台,实现自供电无线传感系统
- 批准号:
555763-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
A Universal Energy Harvesting Platform Based on Hybrid organic-inorganic Composite Nanomaterial to Realize Self-powered Wireless Sensing Systems
基于杂化有机-无机复合纳米材料的通用能量收集平台,实现自供电无线传感系统
- 批准号:
555763-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Collaborative Research: Self-Powered Sensory Nerve System for Civil Structures Using Hybrid Forisome Actuators
合作研究:使用混合 Forisome 执行器的土木结构自供电感觉神经系统
- 批准号:
0510941 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Self-Powered Sensory Nerve System for Civil Structures Using Hybrid Forisome Actuators
合作研究:使用混合 Forisome 执行器的土木结构自供电感觉神经系统
- 批准号:
0510903 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant