Catalytic and Electrochemical Release of Solar Energy Stored in Strained Organic Compounds

存储在应变有机化合物中的太阳能的催化和电化学释放

基本信息

项目摘要

We envision that solar energy conversion and storage could be integrated via intramolecular reactions in single molecule systems. Such processes would combine key features of photovoltaic and photochemical methods in the most simple and efficient manner. The prototypical example for such an intramolecular reaction is the photochemical conversion of norbornadiene (NBD) to its metastable valence isomer quadricyclane (QC), a single-photon, single-molecule process in which bond-breaking and bond-making events are simplified to the maximum. The reverse reaction from QC to NBD releases up to 100 kJ/mol, making QC a solar fuel with an energy density comparable to state-of-the-art batteries.This project aims at generating the fundamental knowledge to unleash the full potential of chemical energy storage in strained organic molecules. Three major challenges associated with the energy release reaction will be addressed: (1) Its catalytic triggering: Starting from a fundamental understanding of the catalytically triggered cycloreversion and its undesired side-reactions, such as dehydrogenation and C-C bond scission, we will aim at developing catalysts with enhanced selectivity and higher reversibility in the storage cycle. (2) Its electrochemical triggering: Based on a fundamental understanding of the electrochemically triggered cycloreversion, we will aim at improving the reversibility of the storage cycle by design of electrodes and electrochemical environments which limit undesired side-reactions and electrode fouling. (3) The direct conversion to electrical energy: As a grand challenge we envision an "energy-storing solar cell", i.e. the direct conversion of the chemical energy stored in QC to electrical energy. To this aim, we will design hybrid interfaces with appropriate electronic structure, chemical structure and electrochemical stability to demonstrate the feasibility of this new concept.To tackle these very ambitious goals, the groups of Bachmann, Libuda, and Papp have teamed up to combine their complementary expertise in surface science, in-situ spectroscopy, electrochemistry, and materials science. The project team will study the mechanism, kinetics, energetics and stability of the NBD/QC system and its derivatives in ultrahigh vacuum, at ambient pressure, at solid/liquid interfaces and under (photo)electrochemical conditions. Combining aspects of insight gained from single crystal studies, complex model catalysts, and nanostructured materials, we will obtain a detailed understanding of the energy release reaction and the factors that currently limit its reversibility. We will then use this knowledge to develop improved catalytic and electrochemical storage systems, i.e. combinations of molecules, materials, and methods enabling "single-photon, single-molecule" energy conversion and storage in a better controlled, more efficient, and more reversible fashion.
我们设想太阳能转换和存储可以通过单分子系统中的分子内反应进行整合。这些过程将以最简单和有效的方式结合光伏和光化学方法的关键特征。这种分子内反应的典型例子是降冰片二烯(NBD)光化学转化为其亚稳态价异构体四环烷(QC),这是一种单光子、单分子过程,其中断键和成键事件被简化为最大限度。从 QC 到 NBD 的逆反应释放高达 100 kJ/mol,使 QC 成为能量密度可与最先进电池相媲美的太阳能燃料。该项目旨在生成基础知识,以释放化学的全部潜力应变有机分子中的能量储存。将解决与能量释放反应相关的三个主要挑战:(1)其催化触发:从对催化触发的环化回复及其不良副反应(例如脱氢和C-C键断裂)的基本了解出发,我们的目标是开发催化剂在储存循环中具有增强的选择性和更高的可逆性。 (2)电化学触发:基于对电化学触发环化的基本理解,我们的目标是通过设计限制不良副反应和电极结垢的电极和电化学环境来提高存储循环的可逆性。 (3)直接转化为电能:作为一个巨大的挑战,我们设想了一种“储能太阳能电池”,即将QC中存储的化学能直接转化为电能。为此,我们将设计具有适当电子结构、化学结构和电化学稳定性的混合接口,以证明这一新概念的可行性。为了实现这些雄心勃勃的目标,Bachmann、Libuda 和 Papp 团队联手将他们的表面科学、原位光谱学、电化学和材料科学方面的互补专业知识。项目团队将研究NBD/QC系统及其衍生物在超高真空、常压、固/液界面和(光)电化学条件下的机理、动力学、能量学和稳定性。结合从单晶研究、复杂模型催化剂和纳米结构材料中获得的见解,我们将详细了解能量释放反应以及目前限制其可逆性的因素。然后,我们将利用这些知识开发改进的催化和电化学存储系统,即分子、材料和方法的组合,以更好控制、更高效和更可逆的方式实现“单光子、单分子”能量转换和存储。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Julien Bachmann, Ph.D.其他文献

Professor Dr. Julien Bachmann, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Julien Bachmann, Ph.D.', 18)}}的其他基金

Investigation of stability and degradation phenomena in model M@C / PANI nanocomposite electrodes with 2D and 3D architecture
研究具有 2D 和 3D 结构的 M@C / PANI 纳米复合电极模型的稳定性和降解现象
  • 批准号:
    429730598
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Chemistry for 3D spintronics
3D 自旋电子学化学
  • 批准号:
    406700532
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

半导体气凝胶电化学晶体管离子传输调控及葡萄糖传感增敏机制
  • 批准号:
    62374113
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
原位构筑双活性位纳米多孔铜基合金及其电化学还原硝酸根串联催化机制的研究
  • 批准号:
    52371232
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
异质结构介孔原子筏催化剂的构筑和电化学析氢性能研究
  • 批准号:
    22375048
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
生物电化学强化人工湿地中电极氨氧化的反应机理与优化调控
  • 批准号:
    52370160
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
过硫酸铵介导烟气硫硝资源电化学协同转化利用研究
  • 批准号:
    22366022
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Developing Electrochemical Sensors to Enable Quantitative Measure of Gliotransmitter Release from Astrocytes
开发电化学传感器以定量测量星形胶质细胞释放的胶质递质
  • 批准号:
    10752836
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Investigation of oxygen release and its influence on electrochemical properties of cathode active materials for lithium ion battery
锂离子电池正极活性材料的氧释放及其对电化学性能的影响研究
  • 批准号:
    18K05288
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on Electrochemical Magnesium Storage/release Properties in Carbonate Ester-based Electrolyte Solutions
碳酸酯基电解质溶液电化学镁储存/释放性能研究
  • 批准号:
    16K05959
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental Studies on Electrochemical Storage and Release of Dual Carriers
双载流子电化学储存与释放的基础研究
  • 批准号:
    26810131
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study Exocytosis in the Region of Synaptic Cleft using Electrochemical Nanoprobe
使用电化学纳米探针研究突触间隙区域的胞吐作用
  • 批准号:
    8723916
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了