Advanced Shape-memory Bulk Metallic Glass Composites

先进的形状记忆块状金属玻璃复合材料

基本信息

项目摘要

Bulk metallic glass matrix composites (BMGCs) containing uniformly dispersed shape-memory crystals have a large potential for applications because they constitute advanced materials with high toughness and high strength. Within the proposed project, we will tackle some of the most important unresolved issues related to the optimization of composite microstructures and the resulting mechanical properties of shape-memory BMGCs. In doing so, the suggested work focuses on preparing and characterizing different CuZr-based glass-forming alloys. Our approach consists of a systematic combination of various state-of-the-art experimental techniques (e.g. in-situ deformation in a HRTEM, in-situ deformation in a high-energy X-ray beam) complemented by finite element modelling, which will allow us to answer three fundamental questions: (1) What is the influence of the chemical composition and the fabrication process on the nucleation and growth process of the shape-memory crystals (i.e. the thermodynamic, kinetic and structural aspects related to the formation of the B2 CuZr phase) and thus on the microstructure formation? (2) What is the contribution of the glassy phase, the crystalline phase and the crystal-glass interface (mismatch strains at the interface) to the overall deformation mechanism? (3) How does the deformation-induced martensitic transformation in the crystals affect the overall plastic deformation in terms of the shear-banding process in the glass and how does the crystal-glass interface, in turn, modify the martensitic transformation in the crystals? The physical mechanisms underlying irreversible deformation, especially the toughening mechanisms, associated with the transformation-induced plasticity in the crystals will be elucidated. The successful implementation of the project is expected to lead to a significant advance in the understanding of the deformation mechanisms in shape-memory BMGCs. As an additional result, we will develop guidelines how to design and therefore optimize novel, strong and ductile BMGCs with advanced properties, which bring practical engineering applications within reach.
散装金属玻璃基质复合材料(BMGC)含有均匀分散的形状内存晶体具有较大应用的潜力,因为它们构成了高韧性和高强度的先进材料。在拟议的项目中,我们将解决与复合微观结构优化以及形状 - 内存BMGC的机械性能有关的一些最重要的未解决的问题。为此,建议的工作着重于制备和表征不同基于CuZR的玻璃形成合金。我们的方法包括各种最先进的实验技术的系统组合(例如,在高能X射线光束中,在HRTEM中的原位变形,原位变形),并通过有限元建模互补,这将使我们能够回答三个基本问题:(1)什么是化学组合物和化学构造过程的影响:(1) (即,与B2 Cuzr相的形成有关的热力学,动力学和结构方面),因此在微观结构形成上? (2)玻璃相,晶相和晶体玻璃界面(界面的不匹配应变)对整体变形机制有什么贡献? (3)变形诱导的晶体中的马氏体转化如何影响玻璃中的剪切束式过程的整体塑性变形,以及晶体玻璃界面如何依次修改晶体中的马氏体转化?将阐明不可逆变形的物理机制,尤其是与晶体中转化诱导的可塑性相关的坚韧机制。预计该项目的成功实施将在理解形状 - 内存BMGC中的变形机制方面取得重大进步。作为另一个结果,我们将制定指南如何设计,从而优化具有先进特性的新颖,强和延性的BMGC,从而使实用的工程应用程序达到影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Simon Pauly其他文献

Professor Dr.-Ing. Simon Pauly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Simon Pauly', 18)}}的其他基金

Rapid solidification and advanced manufacturing of Cu-based shape memory alloys with complex geometries
复杂几何形状铜基形状记忆合金的快速凝固与先进制造
  • 批准号:
    287247591
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Structural inhomogeneities in bulk metallic glasses
大块金属玻璃的结构不均匀性
  • 批准号:
    239216598
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

仿生形状记忆型自驱动接触熔化动态传热行为与强化机理研究
  • 批准号:
    52306077
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于激光加工的形状记忆聚合物仿壁虎脚结构制备及其粘附性能调控研究
  • 批准号:
    52305319
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于混合变量机器学习模型设计高弹热效应高循环稳定性形状记忆合金
  • 批准号:
    52303297
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
压电/形状记忆协同增效阻尼复合材料的制备与能量耗散机制研究
  • 批准号:
    52373083
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
三维石墨烯增强形状记忆聚氨酯的智能磨损抑制机理研究
  • 批准号:
    52305225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Microscale Shape Memory Materials for Advanced Medical Applications Using Lead-Free Ferroelectrics
使用无铅铁电体用于先进医疗应用的新型微型形状记忆材料
  • 批准号:
    19K04479
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rapid solidification and advanced manufacturing of Cu-based shape memory alloys with complex geometries
复杂几何形状铜基形状记忆合金的快速凝固与先进制造
  • 批准号:
    287247591
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Study on realization of cutting process by phase transformation control of super elastic shape memory alloy for advanced medical applications
先进医疗应用超弹性形状记忆合金相变控制实现切割过程的研究
  • 批准号:
    16K17997
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Understanding pH-Dependent Protein Behavior Using Advanced Continuum Theory
使用先进的连续体理论了解 pH 依赖性蛋白质行为
  • 批准号:
    8354184
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
Rapid solidification and advanced manufacturing of Cu-based shape memory alloys with complex geometries
复杂几何形状铜基形状记忆合金的快速凝固与先进制造
  • 批准号:
    223525886
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了