Integrated Memristor-Based Computer Architectures
基于忆阻器的集成计算机架构
基本信息
- 批准号:389549790
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, in the development of memristive devices significant progress has been attained, so that the commercialization of new background memory systems based on this technology has already begun. In present research memristive devices are only used for storing data but not for the processing of data inside a CPU. However, from an energy point of view and based on the memristors non-volatile behavior, memristive devices should also be of interest for data processing, especially for CPUs in IoT-devices utilizing a volatile power supply. Therefore, the aim of this project is to use memristor technology in modern computer architectures; especially for the integration of memristive devices in a CPU for embedded applications. For a further reduction of the energy consumption also the ability of storing more than one bit in a single memristor cell can be used to enable the realization of tenary logic, which requires multi-bit-storage in a memristive register. Tenary logic will result in a redundant number representation, which allows to execute an adding during a constant time independent of the word length. This also results in a decreased power consumption.Due to the compatibility of the memristors technology with standard CMOS processing, an integration of memristors will be possible by postprocessing the chip. However, currently an automated and tool-aided design flow for memristive devices, especially for digital designs, is not available. Instead, dedicated mixed signal circuits have to be developed to enable the use of memristors also in the digital world. Regarding the realization of the tenary logic the problem has to be solved to what extent ceaseless conversions between the analog and the digital domain make sense. Therefore, in addition to the integration of memristors a further goal of this project is the development of a tenary processor architecture utilizing memristive devices. For the realization of such an architecture, e.g., basic mixed-signal blocks can be used. Consequently, memristors will not only be used as pure storage devices but will be part of the data processing within a CPU.The computer architectures will be realized as a prototype IC and verified. The integration of the memristive devices is done through a special BEOL processing in which the memristors will be placed at the top chip layer. Using appropriate benchmarks a qualitative and quantitative evaluation of the developed architectures will be performed to assess the usefulness of memristors for data processing in modern CPUs. A final evaluation shall result in the identification of possible applications fields of the designed architecture.
近年来,在进行回忆设备的开发中,已经取得了重大进展,因此基于该技术的新背景记忆系统的商业化已经开始。在当前的研究中,候选设备仅用于存储数据,而不是用于在CPU内部处理数据。但是,从能量的角度来看,基于备忘录的非易失性行为,回忆设备也应引起数据处理的关注,尤其是使用挥发性电源的物联网设备中的CPU。因此,该项目的目的是在现代计算机架构中使用Memristor技术。特别是为了集成在CPU中用于嵌入式应用程序中的回忆设备。为了进一步降低能源消耗,还可以使用将多一点存储在单个回忆录单元中的能力来实现终止逻辑,这需要在回忆寄存器中进行多位存储。终极逻辑将导致冗余数表示,该表示允许在恒定时间内执行添加时间独立于单词长度。这也会导致功耗降低。对于Memristors技术与标准CMOS处理的兼容性,通过在处理后芯片可以通过标准CMOS处理。但是,目前尚不可用,目前尚不可用用于回忆设备的自动化和工具辅助设计流程,尤其是对于数字设计而言。取而代之的是,必须开发专用的混合信号电路,以便在数字世界中也可以使用备忘录。关于终止逻辑的实现,必须在模拟和数字域之间不断转换的程度上解决问题。因此,除了集成备忘录外,该项目的进一步目标是利用回忆设备的端口处理器架构的开发。为了实现这种体系结构,例如,可以使用基本的混合信号块。因此,回忆录不仅将用作纯存储设备,而且将是CPU中数据处理的一部分。计算机架构将被视为原型IC并进行了验证。回忆设备的集成是通过特殊的Beol加工来完成的,其中将将备忘录放置在顶部芯片层。使用适当的基准测试将对开发的架构进行定性和定量评估,以评估Memristors在现代CPU中数据处理的有用性。最终评估应导致确定设计架构的可能应用领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Dietmar Fey其他文献
Professor Dr.-Ing. Dietmar Fey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Dietmar Fey', 18)}}的其他基金
Memristives In-Memory-Computing: Radiation hard Memory for Computing in Space
忆阻内存计算:用于太空计算的辐射硬内存
- 批准号:
441921944 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Priority Programmes
Kompetenzentwicklung mit Eingebetteten Mikro- und Nanosystemen - KOMINA
嵌入式微米和纳米系统的能力发展 - KOMINA
- 批准号:
183852739 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Organic architectures for self-organising smart pixel sensor chips
自组织智能像素传感器芯片的有机架构
- 批准号:
5453770 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Priority Programmes
Memristive hybrid on-chip memory for a low-power RISC-V processor - Design and Implementation (HYB-RISC)
用于低功耗 RISC-V 处理器的忆阻混合片上存储器 - 设计和实现 (HYB-RISC)
- 批准号:
536099247 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Reconfigurable logic and Multi-bit in-memory processing with ferroelectric memristors -ReLoFeMris
使用铁电忆阻器的可重构逻辑和多位内存处理 -ReLoFeMris
- 批准号:
441909639 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
ERI: Memristor-based Neuromorphic Circuit Design for Closed-Loop Deep Brain Stimulation
ERI:基于忆阻器的闭环深部脑刺激神经形态电路设计
- 批准号:
2301589 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Novel Filament-based Memristor Devices
新型基于灯丝的忆阻器器件
- 批准号:
572682-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Memristor-based Architectures for Neuromorphic Computing
用于神经形态计算的基于忆阻器的架构
- 批准号:
RGPIN-2020-06613 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual