Correlation effects in quantum dots and wires
量子点和量子线的相关效应
基本信息
- 批准号:35776612
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:2007
- 资助国家:德国
- 起止时间:2006-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project we investigate correlation effects in (quasi) one-dimensional quantum wires and in “zero”-dimensional quantum dots with a particular focus on the transport properties of such systems in the linear response regime and singleparticle spectral properties. We have successfully applied a truncation scheme leading to a static self-energy to problems of direct experimental relevance (“phase lapse puzzle” and charging of multi-level dots, Josephson current through correlated quantum dot). The static approximation can only be used in situation in which inelastic processes are irrelevant (e.g. temperatur T = 0 conductance). We thus extended the truncation scheme and kept the frequency dependence of the two-particle vertex which within the one-particle irreducible functional RG leads to a frequency dependent self-energy. We applied this scheme to study the singleimpurity Anderson model (in the appropriate parameter regime dominated by spin fluctuations) and the interacting resonant level model (dominated by charge fluctuations). We discussed the merits and drawbacks of this scheme. We will try to improve on the latter (higher-order corrections). Next we will use the frequency dependent approximation to investigate more complex systems of quantum dots showing a physics which is dominated by the interplay of the Kondo effect and other interactions (such as the RKKY). We will extend the frequency dependent scheme to study quantum wires. An interesting question is the crossover between bulk and boundary Luttinger liquid physics. Finally, we will use the frequency dependent scheme to study fermionic systems coupled to bosons (e.g. local electronic levels coupled to phonons.)
在这个项目中,我们研究了(准)一维量子线和“零”维量子点中的相关效应,特别关注此类系统的传输特性,研究了线性响应范围和单粒子光谱特性。截断方案导致静态自能与直接实验相关的问题(“相移难题”和多级点的充电,通过相关量子点的约瑟夫森电流)静态近似只能用于在非弹性过程不相关的情况下(例如温度 T = 0 电导),我们因此扩展了截断方案并保留了双粒子顶点的频率依赖性,这在单粒子不可约泛函 RG 中导致了频率依赖的自能。我们应用这个方案来研究单杂质安德森模型(在以自旋波动为主的适当参数范围内)和相互作用共振能级模型(以电荷波动为主)我们讨论了优点和。我们将尝试改进(高阶校正)。 接下来,我们将使用频率相关近似来研究更复杂的量子点系统,该系统显示出由近藤效应和其他效应的相互作用主导的物理现象。我们将扩展频率相关方案来研究量子线。最后,我们将使用频率相关方案来研究耦合的费米子系统。玻色子(例如与声子耦合的局部电子能级。)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Volker Meden其他文献
Professor Dr. Volker Meden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
成骨细胞初级纤毛通过NPHP4/YAP/EZH2信号轴调控CKIP-1表达影响牵张成骨效果的机制研究
- 批准号:82301046
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
事半功倍还是适得其反?虚拟影响者健康营销的效果、机制与策略研究
- 批准号:72302249
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
- 批准号:42377063
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
电商平台引入绿色认证的经济价值、作用效果及策略优化研究
- 批准号:72301215
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双特异性纳米抗体EVNA的构建及干预高原肺动脉高压发生发展的效果和机制研究
- 批准号:82360334
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Extension and demonstration of two-particle-level computational theory based on dimensionality reduction to nonlocal electron correlation effects
基于降维非局域电子相关效应的双粒子级计算理论的推广与论证
- 批准号:
22KK0226 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Strong correlation and strong coupling effects in the excitonic phase and its vicinity region based on the first-principles calculations and the quantum many-body calculations
基于第一性原理计算和量子多体计算的激子相及其邻近区域的强关联和强耦合效应
- 批准号:
21K03399 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of emergent electronic properties originated from geometric structures of crystals and local correlation effects
源于晶体几何结构和局域相关效应的新兴电子特性的发展
- 批准号:
18K03542 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Particle correlation effects and new phases of ultra cold Bose-Fermi mixtures
超冷玻色-费米混合物的粒子相关效应和新相
- 批准号:
18K03501 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Designing Kitaev-type metal-organic frameworks and engineering their correlation effects
设计 Kitaev 型金属有机框架并设计其相关效应
- 批准号:
17J05736 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows