Stability of alumina- and mullite-based fibers by thermal exposure: experimental study and phase-field modeling

氧化铝和莫来石基纤维的热暴露稳定性:实验研究和相场建模

基本信息

项目摘要

The efforts to achieve high strength and damage tolerant oxide-based ceramic matrix composites (Ox-CMCs) were, for a long time, focused on searching for new matrix systems and proceeding routes, as well as on the adjustment of the fiber-matrix-interface. Nowadays, such "conventional" methods seem to have reached the limits of their capacity.In the last decade, several studies on oxide fibers and composites revealed another way to enhance the performance of Ox-CMCs by optimal utilization of the oxide fibers. Being used as reinforcements, these fibers are responsible for the mechanical performance of the composites. As it is well-known, oxide fibers present an excellent strength and stiffness in as received conditions. However, commercially available polycrystalline fibers show strength loss when they are exposed to elevated temperatures due to grain growth. Thus, attention has been given to this subject, since such temperatures can be easily reached during processing and application of Ox-CMCs.The goal of the present proposal is to understand the mechanisms and to successively predict microstructural changes of alumina- and mullite-based fibers embedded in ceramic matrices depending on the matrix composition, the processing conditions, and additional heat treatments performed. This will be achieved by combining experiments and phase-field modeling as necessary to bridge the different effects that are involved. Furthermore, the effect of the microstructural changes on the quasi-static and long-term performance of the fibers at high temperatures should be evaluated.For that, minicomposites comprised of one fiber bundle are to be manufactured under different conditions. The grain size distribution and morphology of the fibers in dependency on the matrix composition will be experimentally investigated after exposure to elevated temperatures and mechanical load. The corresponding changes of the strength and the creep performance will be investigated by means of mechanical characterization techniques and correlated to the microstructure evolution. In parallel, the effective growth mechanisms will be studied through phase-field modeling combined with the feedback from the experimental results. The model will take into account the anisotropy of crystal growth, the grain boundary diffusion, the formation and evolution of impurities and pores. Special attention will be given to the abnormal grain size distribution and possible diffusion mechanisms between fiber and matrix.As a main result, it is expected that the enhanced predictability of the fiber properties (in composites) will show a way to determine the matrix composition used. By doing so, it will be possible to reduce the strength loss of the ceramic fibers during composites lifetime. Consequently, an adjusted matrix composition will provide flexibility in the tailoring of composite properties to the target application in terms of strength and durability.
长期以来,为实现高强度和耐受耐氧化物陶瓷基质复合材料(OX-CMC)所做的努力一直致力于寻找新的矩阵系统和程序途径,以及调整光纤 - 矩阵 - 界面。如今,这种“常规”方法似乎已经达到了其能力的限制。在过去的十年中,几项关于氧化物纤维和复合材料的研究揭示了另一种方法,可以通过最佳利用氧化物纤维来增强OX-CMC的性能。这些纤维被用作增援部队,负责复合材料的机械性能。众所周知,氧化物纤维在接收条件下具有出色的强度和刚度。但是,由于晶粒生长,市售的多晶纤维暴露于温度升高时,它们显示出强度损失。因此,由于可以在OX-CMC的处理和应用过程中很容易达到此类温度,因此已经对该主题进行了关注。本提案的目的是了解机制,并依次预测基于氧化铝和mullite的微观结构变化。根据基质组成,加工条件和进行其他热处理的纤维嵌入陶瓷基质中。这将通过将实验和相位模型结合起来,以弥合所涉及的不同效果的必要条件来实现。此外,应评估微观结构变化对纤维在高温下的准静态性能和长期性能的影响。对于在不同条件下由一个纤维束组成的微型复合材料。暴露于温度升高和机械负荷后,将对纤维的晶粒尺寸分布和依赖于基质组成的形态进行实验研究。强度和蠕变性能的相应变化将通过机械表征技术进行研究,并与微结构演化相关。同时,将通过相位模型结合实验结果的反馈来研究有效的生长机制。该模型将考虑晶体生长的各向异性,晶界扩散,杂质和毛孔的形成和演变。将特别注意纤维和基质之间的异常晶粒尺寸分布和可能的扩散机制。作为主要结果,预计纤维性能的增强性(在复合材料中)将显示出一种确定使用的基质组合物的方法。通过这样做,可以在复合材料寿命期间降低陶瓷纤维的强度损失。因此,根据强度和耐用性,调整后的矩阵组合物将在对目标应用程序的复合特性量身定制方面具有灵活性。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase-field modeling of grain growth in presence of grain boundary diffusion and segregation in ceramic matrix mini-composites
  • DOI:
    10.1016/j.commatsci.2021.110295
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    J. Kundin;Hedieh Farhandi;Kamatchi Priya Ganesan;Renato S. M. Almeida;K. Tushtev;K. Rezwan
  • 通讯作者:
    J. Kundin;Hedieh Farhandi;Kamatchi Priya Ganesan;Renato S. M. Almeida;K. Tushtev;K. Rezwan
Joining oxide ceramic matrix composites by ionotropic gelation
  • DOI:
    10.1111/ijac.13507
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Renato S. M. Almeida;Hedieh Farhandi;K. Tushtev;K. Rezwan
  • 通讯作者:
    Renato S. M. Almeida;Hedieh Farhandi;K. Tushtev;K. Rezwan
Obtaining complex-shaped oxide ceramic composites via ionotropic gelation
通过离子凝胶化获得复杂形状的氧化物陶瓷复合材料
Phase-field simulation of abnormal anisotropic grain growth in polycrystalline ceramic fibers
  • DOI:
    10.1016/j.commatsci.2020.109926
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    J. Kundin;Renato S. M. Almeida;Hesham Salama;Hedieh Farhandi;K. Tushtev;K. Rezwan
  • 通讯作者:
    J. Kundin;Renato S. M. Almeida;Hesham Salama;Hedieh Farhandi;K. Tushtev;K. Rezwan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Julia Kundin其他文献

Dr. Julia Kundin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Julia Kundin', 18)}}的其他基金

Application of phase-field simulation of solidification and texture evolution to diffusion chronometry
凝固相场模拟和织构演化在扩散计时中的应用
  • 批准号:
    439529260
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
Improving the thermal stability of oxide ceramic composites: Study of fiber-matrix interactions by combining experiments and phase-field modeling
提高氧化物陶瓷复合材料的热稳定性:结合实验和相场建模研究纤维-基体相互作用
  • 批准号:
    516465404
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

尿素酶解法合成均匀掺杂氧化铝纳米管/棒用于表面辅助激光解吸质谱快速检测抗生素
  • 批准号:
    22376105
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多孔氧化铝陶瓷的动力学特性和本构关系研究
  • 批准号:
    12372352
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
氧化铝液滴沉积的动力学特性及其包覆条件下碳/碳喉衬热结构特性研究
  • 批准号:
    52302479
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于材料素化理念设计氧化铝纤维独石结构陶瓷及其性能调控与退化机制研究
  • 批准号:
    52303386
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
原子层沉积的氧化铝/二硫化钼复合涂层刀具的基础研究
  • 批准号:
    52375413
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Evaluation of Effect on Space Environment of Alumina Slag exhausted from Solid Rocket Motor
固体火箭发动机排出氧化铝渣对空间环境的影响评价
  • 批准号:
    23K04233
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improvement of Radiation Resistance of Alumina Scales Formed on FeCrAl ODS Alloys by Microstructure Control
通过微观结构控制提高 FeCrAl ODS 合金上形成的氧化铝鳞片的耐辐射性能
  • 批准号:
    23K13684
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Regeneration of Phosphorous Saturated Activated Alumina
磷饱和活性氧化铝的再生
  • 批准号:
    CCARD-2022-00214
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    CCI Applied Research and Development Grants
Study of the dissolution kinetic of alumina powder injected in cryolite, by experimental and theoritical analysis with regards to thermal, chemical and flow conditions.
通过热、化学和流动条件的实验和理论分析,研究注入冰晶石中的氧化铝粉末的溶解动力学。
  • 批准号:
    569561-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Doped alumina with tailored material properties for battery applications
具有适合电池应用的定制材料特性的掺杂氧化铝
  • 批准号:
    LP210200938
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了