Investigation of efficient film cooling configurations in realistically turbulent main flow

研究真实湍流主流中的高效气膜冷却配置

基本信息

项目摘要

The development of future, low emission gas turbine combustors requires efficient cooling concepts, which allow a wide range of options to control the combustion process due to a minimum consumption of cooling air. Applying new cooling configurations like the trench cooling, where the cooling air from the effusion jet is distributed laterally, the resulting film cooling efficiency can be considerably improved by up to one order of magnitude compared to simple effusion cooling. Up to now measurements were conducted at a main flow turbulence intensity of Tu = 1%. When exposing the trench geometry to the higher turbulence level of a real combustion chamber, the cooling efficiency might be reduced due to increased liftoff of the cooling air from the surface and premature mixing with the main flow.The main goal of the proposed research project is to achieve a deeper physical understanding of the detailed flow and heat transfer phenomena that occur in effusion cooling as compared to trench film cooling configurations through experimental and numerical investigations. The focus is on study of cooling films in a main flow of high turbulence characteristic for flows in real gas turbine combustion chambers. The effect of this increased main flow turbulence on the complex unsteady flow, mixing and heat transfer processes, as well as the resulting heat transfer coefficients and film cooling effectiveness will be studied experimentally and numerically.The experimental studies will use optical non-intrusive measurement technology. Besides standard techniques such as LDA and high speed PIV, novel measurement techniques will be optimized and applied. Using a combination of infrared and phosphorescence measurement techniques for measuring temperature boundary conditions, the distribution of the local heat transfer coefficient can be determined. Applying thermographic high speed PIV to the film cooling setup, time resolved simultaneous temperature and velocity distributions in the flow field can be measured. This allows the detailed examination of the complex unsteady flow structures and of the turbulent fluxes. The CFD simulations accompanying the experiment are performed using the commercial CFD code ANSYS Fluent with realizable k-epsilon model. For the detailed numerical studies of the effect of large eddies on the film structure and on the turbulent mixing, large eddy simulations will be performed using the open source CFD code OpenFOAM.
未来,低排放燃气轮机燃烧器的发展需要有效的冷却概念,这使得由于最少的冷却空气消耗而控制了燃烧过程。与简单的排放冷却相比,施加了新的冷却配置,例如沟渠冷却,横向分布来自积液喷气机的冷却空气,最多可以提高一个数量级。到现在为止,以TU = 1%的主要流量湍流强度进行了测量。当将沟槽几何形状暴露于真实燃烧室的湍流水平较高时,由于从表面上的冷却空气提高并与主流量过早混合,可能会降低冷却效率。拟议的研究项目的主要目标是通过实验和数值研究,与沟槽膜冷却构型相比,要对积液冷却中发生的详细流动和传热现象有了更深入的理解。重点是研究在真实燃气轮机燃烧室中流量的高湍流特征的主要流动中的冷却膜。这种增加的主要流动湍流对复杂流动流,混合和传热过程以及所得传热系数和膜冷却有效性的影响。实验研究将使用光学非侵入测量技术。 。除了LDA和高速PIV等标准技术外,还将优化和应用新颖的测量技术。使用红外和磷光测量技术来测量温度边界条件,可以确定局部传热系数的分布。可以测量热量高速PIV,在膜冷却设置中,可以测量流动场中的时间分辨出同时分辨的温度和速度分布。这允许对复杂的不稳定流量结构和湍流的详细检查。实验随附的CFD模拟使用具有可实现的K-Epsilon模型的商业CFD代码ANSYS进行进行。对于大涡流对膜结构和湍流混合的影响的详细数值研究,将使用开源CFD代码OpenFOAM进行大型涡流模拟。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Pfitzner其他文献

Professor Dr. Michael Pfitzner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Pfitzner', 18)}}的其他基金

Modeling and Identification of Technically Premix Flame Dynamics
技术上预混火焰动力学的建模和识别
  • 批准号:
    393001638
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Flow and heat transfer in complex film cooling configurations for application in future gas turbine combustors
复杂薄膜冷却配置中的流动和传热,适用于未来燃气轮机燃烧室
  • 批准号:
    239213895
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerische Simulation des verbrennungsinduzierten Wirbelaufplatzens in Drallröhren
涡流管内燃烧引起涡爆的数值模拟
  • 批准号:
    5439451
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Einfluss von periodisch instationären Zuströminhomogenitäten auf das instationäre Strömungs- und Grenzschichtverhalten von Turbinen- und Verdichtergittern bei hohen Mach-Zahlen
周期性不稳定流入不均匀性对高马赫数下涡轮机和压缩机网格的非稳定流动和边界层行为的影响
  • 批准号:
    5204882
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

边缘智能下基于张量计算的时空场景图高效推理方法研究
  • 批准号:
    62302131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高效稳定的多孔配位聚合物膜的研制及电合成过氧化氢
  • 批准号:
    22375223
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于微结构光纤的高效光电异质结集成和能量调控机理研究
  • 批准号:
    62305029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于稀土掺杂和吸收增强的高效二维上转化光伏器件
  • 批准号:
    62304186
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于语义解耦和提示的高效监控视频编码与分析方法研究
  • 批准号:
    62302246
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Tailoring smart film for energy efficient protected cropping
为节能保护性作物量身定制智能薄膜
  • 批准号:
    LP210200345
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
A Multiplex Analyzer for Sepsis Management
用于脓毒症管理的多重分析仪
  • 批准号:
    10483277
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Study of molecular interfaces in polymer thin-film composite membranes for the efficient gas separations
用于高效气体分离的聚合物薄膜复合膜分子界面研究
  • 批准号:
    22K04806
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A robust, low-cost platform for EM connectomics
强大、低成本的 EM 连接组学平台
  • 批准号:
    10273540
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Microfabricated all-diamond microelectrode arrays for neurotransmitter sensing and extracellular recording
用于神经递质传感和细胞外记录的微加工全金刚石微电极阵列
  • 批准号:
    10337137
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了