Birational Methods in Topology and Hyperkähler Geometry
拓扑学和超冷几何中的双有理方法
基本信息
- 批准号:324100988
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this proposal is to make significant progress on the following two distinct problems. Our approach to them would rely on methods coming from birational geometry. 1. Chern numbers and algebraic structures. To any complex manifold X, one can associate the Chern classes of its tangent bundle. Such classes are elements of the integral cohomology groups of X. For instance, the first Chern class of X is the class of the canonical bundle of X. If the dimension of X is n, any product of Chern classes of total degree 2n is called a Chern number of X. The study of Chern numbers is a classical and important topic which is across-the-board in algebraic geometry, differential geometry and topology. Generalising a question of Hirzebruch, Kotschick asked the following basic question: which Chern numbers are determined up to finite ambiguity by the underlying smooth manifold? Together with S. Schreieder, we treated this question in dimension higher than 3, proving that most Chern numbers are unbounded. The main aim of this project is to prove that on any smooth complex projective 3-fold X, the Chern number given by the cube of its first Chern class is bounded by a constant depending only on the topology of X. Results in this direction have been obtained in a recent preprint with P. Cascini, where tools from the Minimal Model Program have been used, combined with techniques from topology and arithmetic. This is a joint project with P. Cascini (Imperial College London) and S. Schreieder (University of Bonn). 2. SYZ conjecture on hyperkähler manifolds. Bauville-Bogomolov's decomposition theorem asserts that up to a finite étale cover any compact Kähler manifold with numerically trivial canonical bundle is the product of compact complex tori, strict Calabi-Yau varieties and hyperkähler manifolds. In this sense, hyperkähler manifolds are among the most important examples of varieties with zero scalar curvature. More precisely, a compact Kähler manifold X of even dimension is said to be hyperkähler if it is simply-connected and if the space of holomorphic two-forms is generated by a nowhere degenerate form. In dimension 2 they are nothing but K3 surfaces. The aim of this second project is to investigate the SYZ conjecture (named after Strominger-Yau-Zaslow) on projective hyperkähler manifolds, which states that any nef line bundle on a hyperkähler has a multiple which is base-point free. This is considered one of the most important open problems in the theory of hyperkähler manifolds. This is a joint project with V. Lazic (University of Bonn).
该提案的目的是在以下两个不同的问题上取得重大进展。我们对它们的方法将依靠来自生物几何形状的方法。 1。Chern数字和代数结构。对于任何复杂的歧管X,都可以将其切线束的Chern类关联。这样的类是X的积分共同体组的要素。 Kotschick概括了Hirzebruch的一个问题,问了以下基本问题:通过基础平滑的歧管确定哪些Chern数字是有限的歧义?与S. Schreieder一起,我们以高于3的维度处理了这个问题,证明大多数Chern数字都是无限的。该项目的主要目的是证明,在任何光滑的复杂投影3倍x上,其第一班级的Cube给出的Chern号码仅取决于X的拓扑。在与P. Cascini的最新预印本中获得了该方向的结果,在此方向上,最小模型的工具与Topology and Topology and Topologe and Arithmscote and Arithmectics一起使用了该方向。这是与P. Cascini(伦敦帝国学院)和S. Schreieder(波恩大学)的联合项目。 2. Syz猜想在Hyperkähler歧管上。鲍维尔 - 博戈莫洛夫(Bauville-Bogomolov)的分解定理断言,在有限的典型覆盖物中,任何紧凑的kähler歧管都带有单独的典型规范捆绑包,是紧凑的复杂托里(Callabi-Yau)的乘积,严格的calabi-yau品种和hyperkähler歧管。从这个意义上讲,Hyperkähler歧管是零标态曲率变化的最重要例子之一。更确切地说,如果简单地连接,并且如果无处变性形式产生了两种形式的空间,则偶数的紧凑型kähler歧管x被认为是超级kähler。在维度2中,它们不过是K3表面。第二个项目的目的是研究投影Hyperkähler歧管上的SYZ猜想(以Strominger-Yau-Zaslow的命名),该歧管指出,HyperKähler上的任何NEF线束都有一个无基点的倍数。这被认为是Hyperkähler歧管理论中最重要的开放问题之一。这是与Lazic(波恩大学)的联合项目。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On some modular contractions of the moduli space of stable pointed curves
关于稳定尖曲线模空间的某些模收缩
- DOI:10.2140/ant.2021.15.1245
- 发表时间:
- 期刊:
- 影响因子:1.3
- 作者:Giulio Codogni;Luca Tasin;Filippo Viviani
- 通讯作者:Filippo Viviani
A note on the fibres of Mori fibre spaces
- DOI:10.1007/s40879-018-0219-z
- 发表时间:2018-01
- 期刊:
- 影响因子:0.6
- 作者:G. Codogni;Andrea Fanelli;R. Svaldi;L. Tasin
- 通讯作者:G. Codogni;Andrea Fanelli;R. Svaldi;L. Tasin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Luca Tasin其他文献
Dr. Luca Tasin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于生成对抗网络和特征辅助的微波器件拓扑建模和优化方法研究
- 批准号:62301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于expander方法的三类图结构(拓扑子式、浸入、图子式)嵌入问题研究
- 批准号:12301447
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶读数的拓扑关联结构域识别和比对方法研究
- 批准号:62372156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
名优茶嫩梢的点云拓扑表征定位方法及采摘试验
- 批准号:52305289
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向飞行器减振设计的大规模高分辨率结构动力拓扑优化方法研究
- 批准号:52375253
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
- 批准号:
10884028 - 财政年份:2023
- 资助金额:
-- - 项目类别:
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
- 批准号:
10885376 - 财政年份:2023
- 资助金额:
-- - 项目类别:
IMAT-ITCR Collaboration: Artificial intelligence enhanced breast cancer dormancy cell classification-based organelle-morphology and topology
IMAT-ITCR 合作:人工智能增强乳腺癌休眠细胞分类的细胞器形态和拓扑
- 批准号:
10884760 - 财政年份:2023
- 资助金额:
-- - 项目类别: