Cantilever (torque) detected multifrequency electron spin resonance spectroscopy of halfmetallic compounds and endohedral metallofullerenes

悬臂(扭矩)检测半金属化合物和内嵌金属富勒烯的多频电子自旋共振光谱

基本信息

项目摘要

In this project we propose to build a highly sensitive multifrequency cantilever-based (torque-detected) electron spin resonance (ESR) spectrometer, and to use it for studies of magnetic anisotropic properties of halfmetallic ferromagnets and endohedral metallofullerenes. Magnetic anisotropy always goes side by side with other fundamental properties, such as electronic correlations in transition metal oxides, in the metallic alloys, or in all kinds of molecular magnets (MM), including endohedral metallofullerenes (EMF). Therefore the study of the magnetic anisotropy provides direct insights into the intrinsic properties of different materials. This can further lead to the observation of new phenomena, or to the improvement of the known properties, so that the material can find technological applications. In the case of halfmetallic ferromagnets magnetic anisotropy as well as such dynamic property as a damping are responsible for the stability of the magnetization and for the ability to switch the magnetic state. Magnetic anisotropy in EMFs, which exhibit single molecular magnet behavior, could yield long living quantum states with zero-field relaxation times reaching several hours. For these materials the size of the sample plays a crucial role: metallic alloys promising for spintronics application has to be made as a thin, nm-size, films, in order to fulfill the requirements for building a device; molecular magnets, such as EMFs, where each molecule has a nanometer size, are especially interesting when deposited on the substrate as single layer. In order to have full access to the magnetic properties it is essential to measure ESR on above mentioned compounds at various frequencies, magnetic fields and at different angles between the sample and the applied magnetic field. This is not always possible in the standard ESR setups, due to a lack of sensitivity, or due to the restriction in frequency, strength and orientation of magnetic field. Cantilevers have an extremely high sensitivity, which is almost independent of the microwave frequency and magnetic field, and it is relatively easy to align them. This makes us confident that the constructed cantilever detected ESR setup will enable to explore static and dynamic magnetic anisotropic properties of halfmetallic ferromagnets and endohedral metallofullerenes.
在这个项目中,我们建议建造一个高灵敏度的多频悬臂梁(扭矩检测)电子自旋共振(ESR)光谱仪,并用它来研究半金属铁磁体和内嵌金属富勒烯的磁各向异性特性。磁各向异性总是与其他基本特性并存,例如过渡金属氧化物、金属合金或各种分子磁体 (MM)(包括内嵌金属富勒烯 (EMF))中的电子相关性。因此,磁各向异性的研究可以直接洞察不同材料的固有特性。这可以进一步导致新现象的观察,或者已知特性的改进,从而使材料能够找到技术应用。在半金属铁磁体的情况下,磁各向异性以及阻尼等动态特性负责磁化的稳定性和切换磁状态的能力。 EMF 中的磁各向异性表现出单分子磁体行为,可以产生长寿命的量子态,零场弛豫时间可达数小时。对于这些材料,样品的尺寸起着至关重要的作用:有希望用于自旋电子学应用的金属合金必须制成纳米尺寸的薄膜,以满足构建器件的要求;分子磁体,例如 EMF,其中每个分子都具有纳米尺寸,当作为单层沉积在基板上时特别有趣。为了充分了解磁性,必须在不同频率、磁场以及样品与施加磁场之间的不同角度下测量上述化合物的 ESR。由于缺乏灵敏度,或者由于磁场频率、强度和方向的限制,这在标准 ESR 设置中并不总是可行。悬臂梁具有极高的灵敏度,几乎不受微波频率和磁场的影响,并且相对容易对准。这使我们相信,所构建的悬臂检测 ESR 装置将能够探索半金属铁磁体和内嵌金属富勒烯的静态和动态磁各向异性特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Alexey Alfonsov, Ph.D.其他文献

Dr. Alexey Alfonsov, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Alexey Alfonsov, Ph.D.', 18)}}的其他基金

Investigation of anisotropic and dynamic magnetic properties of Heusler compounds and double perovskites by means of torque detected electron spin resonance
通过扭矩检测电子自旋共振研究赫斯勒化合物和双钙钛矿的各向异性和动态磁特性
  • 批准号:
    248879838
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Static and dynamic magnetism of topologically non-trivial magnetic materials
拓扑非平凡磁性材料的静态和动态磁性
  • 批准号:
    499461434
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

界面轨道杂化对磁性多层膜中自旋轨道扭矩和磁相互作用的调控
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
各向异性磁性多层膜中自旋轨道扭矩无场翻转机制及相关磁相互作用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
超快自扭矩光场的产生及在太赫兹涡旋调控中的应用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
EAST等离子体自发扭矩分布的实验研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目
基于交变聚焦磁场的磁电式扭矩-扭振测量机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:

相似海外基金

If a spin could torque: quantum force sensing with levitated nanodiamonds
如果自旋可以产生扭矩:利用悬浮纳米金刚石进行量子力传感
  • 批准号:
    DP240100942
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
  • 批准号:
    10748341
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
ECCS-EPSRC. Acoustically Induced Ferromagnetic Resonance (FMR) Assisted Energy Efficient Spin Torque Memory Devices
ECCS-EPSRC。
  • 批准号:
    EP/X036715/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
SBIR Phase II: An innovative calibration software to suppress torque ripple and improve performance of electric motors.
SBIR Phase II:一款创新的校准软件,可抑制扭矩脉动并提高电动机的性能。
  • 批准号:
    2233023
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
The torque around the axial direction of rotating detoantion engines
旋转爆震发动机绕轴向的扭矩
  • 批准号:
    23KJ1084
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了