SOLSTICE - SOLids in Strong Terahertz and Infrared CE-phase-stable waveforms

SOLSTICE - 强太赫兹和红外 CE 相位稳定波形中的固体

基本信息

项目摘要

Lightwave-driven electronic dynamics occurring on sub-optical-cycle time scales in condensed-matter and nanosystems is a fascinating frontier of attosecond science originally studied in atoms and molecules. Adapting attosecond metrology techniques to observe and control the fastest electronic dynamics in the plethora of known solids and novel quantum materials holds great promise for a wealth of fundamental scientific discoveries, thereby potentially impacting future technologies such as emerging petahertz electronic signal processing or strong-field optoelectronics.In the second funding period of the SOLSTICE project, we want to continue our ongoing research investigating solids irradiated by strong terahertz (THz) and tailored infrared (IR) carrier-envelope phase (CEP)-stable optical waveforms. In particular, studying high-harmonic generation (HHG), which is one of the cornerstones of attosecond science serving here as paradigm of a nonperturbative strong-field process, we want to elucidate in greater depth the physical similarities and differences compared to the corresponding process in atomic and molecular gases. Most importantly, we want to explore the unprecedented capabilities emerging from tailored intense IR-THz fields and secondary attosecond HHG sources for advanced spectroscopic applications.In this joint experiment/theory project, by combining HHG experiments with ab-initio time-dependent density-functional theory (TDDFT) simulations, we want to extend HHG from semiconductors and insulators to more complex solids including two-dimensional (2D) materials, strongly correlated materials, and topological insulators. This project is thus expected to break new ground in combining strong-field attoscience and Mott-Hubbard physics. Polarization-state-resolved high-harmonic spectroscopy sensitive to sub-cycle electronic and structural dynamics will open up new avenues in ultra-fast spectroscopy of quantum materials. We will synthesize "perfect waveforms" for atomic-like HHG from 2D materials and compare it to the gas-phase counterpart. We also want to explore new opportunities of THz-dressing-based symmetry control manifesting in HHG from crystals. Furthermore, time-resolved spectroscopy with isolated attosecond XUV pulses and sub-cycle optical waveforms permits to study dynamics in materials featuring strong excitonic effects such as 2D materials.Beside tackling fundamental physical questions in this project, our research efforts also aim to push the present technological limitations of solid-HHG to realize bright and compact solid-state attosecond XUV sources and VUV/XUV frequency combs for future spectroscopies.
在凝结物和纳米系统中发生的灯光驱动的电子动力学是最初在原子和分子中研究的Attosecond Science的一个迷人的前沿。 Adapting attosecond metrology techniques to observe and control the fastest electronic dynamics in the plethora of known solids and novel quantum materials holds great promise for a wealth of fundamental scientific discoveries, thereby potentially impacting future technologies such as emerging petahertz electronic signal processing or strong-field optoelectronics.In the second funding period of the SOLSTICE project, we want to continue our ongoing research investigating solids被强泰赫兹(THZ)和量身定制的红外(IR)载波 - envelope阶段(CEP) - 稳定的光波形辐照。特别是,研究高谐波产生(HHG),这是Attosend Science的基石之一,在这里充当非扰动强场过程的范式,我们希望在与原子和分子气中相应的过程相比,更深入地阐明物理相似性和差异。最重要的是,我们希望探索从量身定制的IR-THZ领域和高级光谱应用HHG来源中探索的前所未有的功能。在该联合实验/理论项目中,通过将HHG实验与AB-INITIO时间相关的密度官能论(TDDDF)相结合,可以将HHG实验结合到HHG实验,以实现AB-Intio ob-initio tdddd forments(tddd ftddd ftddd)。固体包括二维(2D)材料,密切相关的材料和拓扑绝缘子。因此,预计该项目将在结合强场Attoscience和Mott-Hubbard物理学方面打破新的基础。对亚周期电子和结构动力学敏感的偏振状态分辨高谐波光谱法将在量子材料的超快速光谱中开辟新的途径。我们将从2D材料中合成类似于原子的HHG的“完美波形”,并将其与气相对应物进行比较。我们还想探索从晶体中HHG中表现出的基于THZ涂层的对称控制的新机会。此外,与隔离的XUV脉冲和亚周期光波形的分离时间分解的光谱允许允许在具有强烈的激发效应(2D材料)的材料中研究动力学。在该项目中解决基本的物理问题,我们的研究工作还旨在推动固体/稳固型的频率效果,以推动实心/稳固的效果,以推动实心的效果,并构成了良好的态度,并构成了良好的迹象。光谱学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Franz Xaver Kärtner其他文献

Professor Dr.-Ing. Franz Xaver Kärtner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Franz Xaver Kärtner', 18)}}的其他基金

Generation of sub-picosecond electron bunches by strong terahertz fields for high gradient electron acceleration and ultrafast electron diffractive imaging
通过强太赫兹场产生亚皮秒电子束,用于高梯度电子加速和超快电子衍射成像
  • 批准号:
    405983224
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Monolithic, Ultralow Jitter, High Frequency Microwave Synthesizer
单片、超低抖动、高频微波合成器
  • 批准号:
    392199472
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Active Plasmonics with Strong THz Fields
具有强太赫兹场的主动等离子体
  • 批准号:
    432266622
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Custom designed and unstrained SESAMs for fiber based shortpulse lasers
用于基于光纤的短脉冲激光器的定制设计和无应变 SESAM
  • 批准号:
    510095359
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)

相似国自然基金

强耦合非晶态固体的全息及有效理论研究
  • 批准号:
    12275038
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
强耦合非晶态固体的全息及有效理论研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于强太赫兹场的超强激光与固体靶作用中超热电子动力学研究
  • 批准号:
    12175306
  • 批准年份:
    2021
  • 资助金额:
    64 万元
  • 项目类别:
    面上项目
基于双载体分子间强相互作用的固体分散体构建及其抑制无定形药物相分离机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
从晶体对称性出发探索超快强激光作用下的固体谐波产生与应用
  • 批准号:
    11974185
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

Electronic structure of solids and interfaces with strong electron-electron/Boson interactions
固体的电子结构和具有强电子-电子/玻色子相互作用的界面
  • 批准号:
    RGPIN-2018-04671
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Electronic structure of solids and interfaces with strong electron-electron/Boson interactions
固体的电子结构和具有强电子-电子/玻色子相互作用的界面
  • 批准号:
    RGPIN-2018-04671
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Establishment of strong light field photoscience in solids and application to materials science
固体强光场光科学的建立及其在材料科学中的应用
  • 批准号:
    21H05017
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Chemistry and Physics of Molecular Systems with Mathematically-Defined Strong Isotropic Lattice Structures
具有数学定义的强各向同性晶格结构的分子系统的化学和物理
  • 批准号:
    20H05621
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
Electronic structure of solids and interfaces with strong electron-electron/Boson interactions
固体的电子结构和具有强电子-电子/玻色子相互作用的界面
  • 批准号:
    RGPIN-2018-04671
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了