Quantification of the Trade-off between Energy and Exactness in Computer Vision Processor Architectures Enhanced with Stochastic Computing Mechanisms

通过随机计算机制增强的计算机视觉处理器架构中能量与精确性之间权衡的量化

基本信息

项目摘要

Stochastic computing has recently emerged as a promising approach for designing energy-efficient embedded hardware systems, taking into account the ability of many applications (e.g., computer vision) to tolerate the loss of precision in the computed results. Rather than designing the hardware for worst case scenarios featuring expensive guard-bands, designers can relax the implementation constraints and deliberately expose hardware variability, obtaining significant processing performance improvements and energy benefits. Typical implementation constraints are related to operation frequency or operation voltage. Reducing the operation voltage will significantly reduce the power consumption and increase the error rate (i.e., malfunctioning). How to design "imprecise" hardware systems, in order to reduce the error rate while exposing hardware variability, is the main challenge of stochastic computing. Understanding all these hardware design trade-offs and their implication on the target application resulting from the imprecise computation is mandatory.The use of stochastic computing in processor architectures and computer vision applications requires the study of new hardware design techniques at all design levels (i.e., application, processor architecture, and chip layout). This project proposes to quantify the energy-exactness trade-offs in computer vision processor architectures enhanced with stochastic computing mechanisms. For this purpose, two different processor architectures (i.e., a VLIW architecture enhanced with SIMD instructions and a Vector Processor architecture), which orthogonally exploit the data parallelism inherent in computer vision algorithms will be studied. Different processing characteristics result in different hardware mechanisms that require different stochastic computing approaches in order to increase their performance and/or energy efficiency. Analytical error and power models of the resulting stochastic computing mechanisms will be derived to estimate the computation exactness and power consumption of both processor architectures, respectively. Moreover, FPGA-based rapid prototyping will be used to accelerate the verification and analysis of the processing performance of both processor architectures. Furthermore, the computation errors introduced by the stochastic mechanisms and the power consumption models, taking the internal switching activity into account, will be also emulated. Several feature extraction algorithms with different quality, reliability, and cost-effectiveness for object detection and tracking will be used to evaluate the influence of the stochastic computing errors. Finally, this project will allow not only to find and understand the optimal stochastic processor architecture for the exemplary feature extraction algorithm, but also to identify new stochastic computing mechanisms for different processor architecture types especially suited for computer vision applications.
考虑到许多应用程序(例如,计算机视觉)能够忍受计算结果中的精度丧失的能力,随机计算最近成为设计节能嵌入式硬件系统的有前途的方法。设计师可以放宽实施约束并故意揭示硬件可变性,从而获得大量的处理性能改善和能源益处,而不是为最坏情况设计硬件设计硬件,而是可以放松实施约束并故意暴露了硬件的可变性。典型的实现约束与操作频率或操作电压有关。降低操作电压将显着降低功耗并提高错误率(即故障)。如何设计“不精确”的硬件系统,以降低错误率,同时暴露硬件可变性,这是随机计算的主要挑战。强制了解所有这些硬件设计权衡及其对由于不准确计算而产生的目标应用的含义。该项目建议通过随机计算机制来量化计算机视觉处理器体系结构中的能量脱位权衡。为此,将研究两个不同的处理器体系结构(即,通过SIMD指令增强了VLIW体系结构和矢量处理器体系结构),它们将在正交方面利用计算机视觉算法中固有的数据并行性。不同的处理特性导致不同的硬件机制需要不同的随机计算方法,以提高其性能和/或能源效率。将得出所得随机计算机制的分析误差和功率模型,以分别估计两个处理器架构的精确性和功耗。此外,基于FPGA的快速原型将用于加速对两个处理器架构的处理性能的验证和分析。此外,还将模拟由随机机制和功耗模型引入的计算误差(考虑到内部切换活动)。具有不同质量,可靠性和对象检测和跟踪成本效益的几种特征提取算法将用于评估随机计算误差的影响。最后,该项目不仅允许为示例性特征提取算法找到并理解最佳的随机处理器体系结构,而且还可以识别针对不同处理器体系结构类型的新的随机计算机制,特别适合计算机视觉应用程序。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Coding Approach to Improve the Energy Efficiency of Approximate NoCs
Systematic Design of an Approximate Adder: The Optimized Lower Part Constant-OR Adder
FPGA emulation methodology for fast and accurate power estimation of embedded processors
用于快速准确估计嵌入式处理器功耗的 FPGA 仿真方法
  • DOI:
    10.1016/j.sysarc.2016.12.008
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Hesselbarth;G. Schewior;H. Blume
  • 通讯作者:
    H. Blume
Coherent Design of Hybrid Approximate Adders: Unified Design Framework and Metrics
混合近似加法器的相干设计:统一设计框架和指标
Misalignment-aware delay modeling of narrow on-chip interconnects considering variability
考虑可变性的窄片上互连的未对准感知延迟建模
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Holger Blume其他文献

Professor Dr.-Ing. Holger Blume的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Holger Blume', 18)}}的其他基金

Real-World Design of a cognitive MIMO-UWB Communication System
认知 MIMO-UWB 通信系统的实际设计
  • 批准号:
    178793473
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

亚纳米COF界面自组装镶嵌膜突破离子膜传导性和选择性trade-off效应
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
金属功能基元序构的新型有序多孔材料及突破气体分离trade-off的新机制研究
  • 批准号:
    92163110
  • 批准年份:
    2021
  • 资助金额:
    65.00 万元
  • 项目类别:
    重大研究计划
亚纳米COF界面自组装镶嵌膜突破离子膜传导性和选择性trade-off效应
  • 批准号:
    22178042
  • 批准年份:
    2021
  • 资助金额:
    60.00 万元
  • 项目类别:
    面上项目
金属功能基元序构的新型有序多孔材料及突破气体分离trade-off的新机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    65 万元
  • 项目类别:
    重大研究计划

相似海外基金

CAREER: Overcoming the trade-off between thermopower and conductivity in transition metal oxides
职业生涯:克服过渡金属氧化物热电势和电导率之间的权衡
  • 批准号:
    2340234
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of Reversible Double-Layer Polymer Modification Technology to Break the Safety/Efficacy Trade-Off of Delivering Enzyme
开发可逆双层聚合物改性技术,打破酶递送安全性/有效性的权衡
  • 批准号:
    23K28429
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Evaluation of Japanese pediatric surgeon proficiency using the NCD, and investigation of patient preferences for a trade-off between travel distance and potential outcome improvement
使用 NCD 评估日本儿科外科医生的熟练程度,并调查患者偏好以权衡旅行距离和潜在的结果改善
  • 批准号:
    23K09596
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Evolving thicker skin: Understanding how adaptations to a universal trade-off dictate the climate vulnerability and ecology of an imperiled vertebrate clade
合作研究:进化更厚的皮肤:了解对普遍权衡的适应如何决定濒临灭绝的脊椎动物进化枝的气候脆弱性和生态
  • 批准号:
    2247610
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of the non-equilibrium thermoelectric measurement method to overcome the thermoelectric trade-off
开发非平衡热电测量方法以克服热电权衡
  • 批准号:
    23K17667
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了