Integrated microstructures for label-free interrogation of protein conformational dynamics by plasmon-enhanced THz spectroscopy
通过等离子体增强太赫兹光谱对蛋白质构象动力学进行无标记询问的集成微结构
基本信息
- 批准号:272553338
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conformational organization and dynamics of proteins critical determine their biological function and their malfunction in diseases. Current structural biology techniques largely fail when it comes to highly dynamic or largely unstructured cases. As a complementary approach, THz spectroscopy holds tremendous promises as a new approach to study structurally flexible proteins as it is highly sensitive to collective vibrational modes, charge distribution and hydration of proteins. While the unique potential of THz spectroscopy for label-free interrogation of protein conformations and conformational dynamics is broadly accepted, the application to biologically and medically relevant target proteins is still severely limited by the very high quantities and concentrations required for traditional THz measurements. Our project aims to overcome this limitation by a comprehensive THz sensor design dedicated for spectroscopic analysis of proteins available in low amounts and concentrations. By an interdisciplinary approach between membrane biology (UOS), computational physics (UKS) and Si engineering (IHP), the project targets to set up a high performance, cost-effective THz protein sensor platform based on Si CMOS compatible, resonant THz near field optics. During the first 24 month of the project, we have by close collaboration between UKS and IHP successfully designed and fabricated Ge/Si microstructures with THz microresonators that were characterized with respect to material properties and THz resonance. IHP together with UOS developed material- and geometry-specific surface modification of Ge/Si microstructures that allowed site-specific protein capturing and sample concentration in resonance hotspots directly from cells. These efforts will lead to the proof-of-concept to demonstrate THz sensing of proteins using Ge microresonators. In the second phase of the project, we will focus on optimizing material properties and sensor design. By including metallic nanoparticles and spoof plasmonic structures, further field enhancement and sensitivity will be achieved. To further increase signal to noise, we will use functionalized hydrogels by photopolymerization to cover the entire sensor hots with protein samples and hybrid surface architectures incorporating metallic nanoparticles. Advanced surface functionalization will be combined with sensor designs that facilitate sample handling via microfluidics. Using a set of representative model proteins cover structurally well defined, flexible and intrinsically disordered proteins, we will explore capabilities and limitations of our THz microdevices.
蛋白质的构象组织和动力学批判性决定了它们的生物学功能和疾病中的故障。当前的结构生物学技术在高度动态或主要非结构化病例方面大大失败。作为一种互补方法,THZ光谱法具有巨大的承诺,作为一种研究结构柔性蛋白的新方法,因为它对集体振动模式,电荷分布和蛋白质的水合非常敏感。虽然THZ光谱对蛋白质构象和构象动力学的无标记询问的独特潜力被广泛接受,但在生物学和医学上相关的靶蛋白上的应用仍受到传统THZ测量所需的很高数量和浓度的严重限制。我们的项目旨在通过专门针对低量和浓度的蛋白质分析的全面THZ传感器设计来克服这一局限性。通过膜生物学(UOS),计算物理(UKS)和SI Engineering(IHP)之间的跨学科方法,该项目的目标是建立基于SI CMOS兼容的高性能,具有成本效益的THZ蛋白传感器平台光学。在该项目的前24个月中,我们通过UKS和IHP之间的密切合作,成功设计和制造的GE/SI微结构与THZ微孔子相对于材料属性和THZ共振的特征。 IHP与UOS一起开发了GE/SI微结构的材料和几何特异性表面修饰,从而使位点特异性蛋白质捕获和样品浓度直接从细胞中捕获和样品浓度。这些努力将导致概念验看,以证明使用GE微孔子对蛋白质进行THS感应。在项目的第二阶段,我们将专注于优化材料属性和传感器设计。通过包括金属纳米颗粒和欺骗等离子结构,将实现进一步的场所增强和灵敏度。为了进一步增加信号到噪声,我们将通过光聚合使用功能化的水凝胶来覆盖整个传感器热,并使用蛋白质样品和融合金属纳米颗粒的杂交表面结构。先进的表面功能将与传感器设计结合使用,以促进通过微流体的样品处理。使用一组代表性的模型蛋白覆盖结构良好的,柔性和本质上无序的蛋白质,我们将探索THZ微发频的能力和局限性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Giovanni Capellini, Ph.D.其他文献
Professor Dr. Giovanni Capellini, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于同步辐射快速成像的空化流两相微观结构及其失稳机制研究
- 批准号:52306041
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
镧-碳酸根络合物的分子结构及其在针铁矿表面微观络合机制的计算模拟研究
- 批准号:42302038
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双向拉伸诱导下生物可降解高分子的微观结构演化与流变机理
- 批准号:12372245
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
热蒸镀准二维钙钛矿微观结构、薄膜质量与发光二极管关联研究
- 批准号:62374103
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
超高疲劳寿命多级结构纳米晶镍钛形状记忆合金的制备、微观组织与力学行为研究
- 批准号:12302095
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
相似海外基金
Construction of control technology for cell behavior and bone tissue formation using metallographic microstructures
利用金相微观结构构建细胞行为和骨组织形成的控制技术
- 批准号:
23H01711 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Understanding the Dynamics of Periodic Planar Microstructures Responding to Colliding Micro-Particles
了解周期性平面微结构响应碰撞微粒的动力学
- 批准号:
2318110 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Tailored Microstructures via Thermoelectric-Magnetohydrodynamics for Additive Manufacturing (TEAM)
通过热电磁流体动力学定制微结构用于增材制造 (TEAM)
- 批准号:
EP/W032147/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323938 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant