A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
基本信息
- 批准号:2405191
- 负责人:
- 金额:$ 40.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award supports a research program involving an enriched form of counting to study the solutions of equations and the spaces they form. It matters if the solution to a set of equations can be expressed using the usual counting numbers, or if real numbers are required, or if one must use imaginary numbers. The enriched count detects such differences. In some cases, it is closely connected to the number of holes of dimension d in the shape of a space of real solutions to the equations. This project exploits the power of the enriched count, exposing potential applications in number theory and algebraic geometry. The award will also support a pipeline for a strong and diverse mathematical workforce. This will involve a continuing program of week-long summer math jobs for gifted high school students from diverse backgrounds. During this program, the PI will facilitate collaborative projects with high school student and teachers, providing background material as necessary. Graduates from the summer program will be encouraged to continue on to a Research Experience for Undergraduates that will provide further mathematical training and research mentorship. The proposed research studies number-theoretic and algebro-geometric questions using cohomology theories and homotopical methods in the framework of Morel and Voevodsky's A1-homotopy theory. The project uses stable A1-homotopy theory to produce results in enumerative geometry over non-algebraically closed fields and rings of integers. New Gromov--Witten invariants defined over general fields have the potential to satisfy wall-crossing formulas, surgery formulas, and WDVV equations. For this, the project studies notions of spin over general fields. The Weil conjectures connect the number of solutions to equations over finite fields to the topology of their complex points: The zeta function of a variety over a finite field is simultaneously a generating function for the number of solutions to its defining equations and a product of characteristic polynomials of endomorphisms of cohomology groups. The ranks of these cohomology groups are the Betti numbers of the associated complex manifold. The logarithmic derivative of the zeta function is enriched to a power series with coefficients in the Grothendieck--Witt group, producing a connection with the associated real manifold. This project aims to increase our control over this logarithmic derivative of the zeta function and its applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持一项研究计划,涉及丰富的计数形式,以研究方程的解及其形成的空间。一组方程的解是否可以使用通常的计数来表示,或者是否需要实数,或者是否必须使用虚数,这很重要。富集计数检测到这种差异。在某些情况下,它与方程实解空间形状中 d 维孔的数量密切相关。该项目利用了丰富计数的力量,揭示了数论和代数几何中的潜在应用。该奖项还将支持培养强大而多元化的数学队伍。 这将涉及为来自不同背景的有天赋的高中生提供为期一周的暑期数学工作的持续计划。在此计划期间,PI 将促进与高中生和教师的合作项目,并根据需要提供背景材料。我们将鼓励暑期项目的毕业生继续为本科生提供研究经验,以提供进一步的数学培训和研究指导。 拟议的研究在 Morel 和 Voevodsky 的 A1 同伦理论框架内使用上同调理论和同伦方法研究数论和代数几何问题。该项目使用稳定的 A1 同伦理论来产生非代数闭域和整数环上的枚举几何结果。在一般域上定义的新 Gromov--Witten 不变量有可能满足穿墙公式、手术公式和 WDVV 方程。为此,该项目研究了一般领域的旋转概念。韦尔猜想将有限域上的方程的解的数量与其复点的拓扑联系起来:有限域上的多项式的 zeta 函数同时是其定义方程的解的数量的生成函数和特征的乘积上同调群的自同态多项式。这些上同调群的等级是相关复流形的贝蒂数。 zeta 函数的对数导数被丰富为具有 Grothendieck-Witt 群系数的幂级数,产生与相关实流形的联系。该项目旨在加强我们对 zeta 函数的对数导数及其应用的控制。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirsten Wickelgren其他文献
Universal covering spaces and fundamental groups in algebraic geometry as schemes
作为方案的代数几何中的通用覆盖空间和基本群
- DOI:
10.5802/jtnb.774 - 发表时间:
2009-02-19 - 期刊:
- 影响因子:0
- 作者:
Ravi Vakil;Kirsten Wickelgren - 通讯作者:
Kirsten Wickelgren
ON QUADRATICALLY
二次方
- DOI:
- 发表时间:
1970-01-01 - 期刊:
- 影响因子:0
- 作者:
Tom Bachmann;Kirsten Wickelgren - 通讯作者:
Kirsten Wickelgren
Compactly supported $\mathbb{A}^{1}$-Euler characteristic and the Hochschild complex
紧支持 $mathbb{A}^{1}$-欧拉特征和 Hochschild 复形
- DOI:
10.1155/2024/4873544 - 发表时间:
2020-03-20 - 期刊:
- 影响因子:0
- 作者:
Candace Bethea;Morgan Opie;Kirsten Wickelgren;Inna Zakharevich - 通讯作者:
Inna Zakharevich
Kirsten Wickelgren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirsten Wickelgren', 18)}}的其他基金
Conference on Algebraic Topology and Topological Data Analysis
代数拓扑与拓扑数据分析会议
- 批准号:
2223905 - 财政年份:2022
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Motivic Homotopy Theory and Applications to Enumerative Geometry
本征同伦理论及其在枚举几何中的应用
- 批准号:
2103838 - 财政年份:2021
- 资助金额:
$ 40.55万 - 项目类别:
Continuing Grant
Motivic Homotopy Theory and Applications to Enumerative Geometry
本征同伦理论及其在枚举几何中的应用
- 批准号:
2103838 - 财政年份:2021
- 资助金额:
$ 40.55万 - 项目类别:
Continuing Grant
CAREER: Etale and Motivic Homotopy Theory and Applications to Arithmetic Geometry
职业:基元同伦理论及其在算术几何中的应用
- 批准号:
2001890 - 财政年份:2019
- 资助金额:
$ 40.55万 - 项目类别:
Continuing Grant
CAREER: Etale and Motivic Homotopy Theory and Applications to Arithmetic Geometry
职业:基元同伦理论及其在算术几何中的应用
- 批准号:
1552730 - 财政年份:2016
- 资助金额:
$ 40.55万 - 项目类别:
Continuing Grant
Homotopy theory of schemes, Grothendieck's anabelian program, rational points
图式的同伦论、格洛腾迪克的阿贝尔纲领、有理点
- 批准号:
1406380 - 财政年份:2014
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
相似国自然基金
基于同伦分析法的规模级忆阻电路物理模型解析化重构理论
- 批准号:62274036
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
规范理论中强同伦李代数的研究和应用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Morava K-理论与球面稳定同伦群
- 批准号:11761072
- 批准年份:2017
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
基于对称理论的近似约化与同伦近似约化
- 批准号:11505094
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
同伦范畴的 Gorenstein 同调理论和紧生成性
- 批准号:11501451
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
- 批准号:
RGPIN-2021-02603 - 财政年份:2022
- 资助金额:
$ 40.55万 - 项目类别:
Discovery Grants Program - Individual
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
- 批准号:
RGPIN-2021-02603 - 财政年份:2022
- 资助金额:
$ 40.55万 - 项目类别:
Discovery Grants Program - Individual
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
- 批准号:
RGPIN-2021-02603 - 财政年份:2021
- 资助金额:
$ 40.55万 - 项目类别:
Discovery Grants Program - Individual
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
- 批准号:
RGPIN-2021-02603 - 财政年份:2021
- 资助金额:
$ 40.55万 - 项目类别:
Discovery Grants Program - Individual
isogenic homotopy theory and its applications to geometry and derived algebraic geometry
等基因同伦理论及其在几何和派生代数几何中的应用
- 批准号:
15K04872 - 财政年份:2015
- 资助金额:
$ 40.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)