New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
基本信息
- 批准号:2403736
- 负责人:
- 金额:$ 55.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Macromolecular, Supramolecular and Nanochemistry (MSN) program in the Division of Chemistry, Professor Guangbin Dong at the University of Chicago is developing efficient and scalable synthetic approaches for preparing atomically precise graphene nanoribbons (GNRs). These nanoribbons are exquisitely thin strips of graphene: a sheet of carbon atoms arranged in a rigid structure that resembles chicken wire. Graphene nanoribbons have emerged as attractive organic materials for potential applications in high speed, lightweight, flexible electronic, and spintronic devices. In this project, physical organic chemistry knowledge will be combined with advanced tools of transition metal catalysis to develop efficient strategies for making these interesting materials. If successful, the research will address a long-standing challenge of preparing narrow zig-zag graphene nanoribbons for studying their physical, electronical, optical, and magnetic properties. The research team will also be actively engaged in the Chicago Pre-College Science & Engineering Program (ChiS&E) to provide early chemistry education to Chicago public middle-school students, the Collegiate Scholars Program to teach high school students, and the Leadership Alliance Summer Research Early Identification Program (SR-EIP) to offer lab research experience to undergraduate students. Integration of the project with these outreach activities has the potential to greatly encourage diverse and students from underrepresented groups to explore careers in science and engineering while learning and actively contributing to research.The research project will focus on the development of efficient and scalable synthetic approaches towards atomically precise and narrow N=3-5 zigzag graphene nanoribbons (zGNRs). The preparation and fabrication in liquid phase of well-defined pristine zGNRs are very challenging and underdeveloped. To overcome these unmet challenges, stepwise cyclodehydrogenation approaches to access zGNRs from their more stable oxidized or reduced precursor ribbons will be devised. The novel monomer synthesis, on the other hand, will be explored using palladium/norbornene catalysis. Compared to the existing approaches for GNR synthesis, the merits of the new strategies have the potential to be quite significant: (i) monomers will be prepared in a streamlined manner from commercially available starting materials; (ii) the syntheses will be scalable by using in solution polymerization; (iii) air sensitive intermediates will be circumvented, easing the material transfer process; (iv) aryl−aryl cleavage defects are to be minimized by avoiding labile m-xylene-type units. The knowledge gained from this project has the potential to advance the understanding of these graphene-like quasi-one-dimensional polymers, which in turn will further stimulate the development of other new conjugated organic semiconducting materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系高分子、超分子和纳米化学(MSN)项目的支持下,芝加哥大学董广斌教授正在开发高效且可扩展的合成方法,用于制备原子级精确的石墨烯纳米带(GNR)。这些纳米带非常薄。石墨烯条:排列成类似于铁丝网的刚性结构的碳原子片,石墨烯纳米带已成为具有潜力的有吸引力的有机材料。在该项目中,物理有机化学知识将与先进的过渡金属催化工具相结合,以开发制造这些有趣材料的有效策略。制备窄锯齿形石墨烯纳米带以研究其物理、电子、光学和磁性特性是一项长期挑战,该研究团队还将积极参与芝加哥大学预科科学与工程计划(ChiS&E),以提供早期化学成果。教育为芝加哥公立中学生提供的项目、为高中生授课的大学学者计划以及为本科生提供实验室研究经验的领导力联盟夏季研究早期识别项目 (SR-EIP)。有潜力极大地鼓励多元化和来自代表性不足群体的学生在学习和积极为研究做出贡献的同时探索科学和工程职业。该研究项目将侧重于开发高效且可扩展的合成方法,以实现原子精确和窄N = 3-5锯齿形石墨烯纳米带 (zGNR) 的液相制备和制造非常具有挑战性且尚未开发。另一方面,与现有方法相比,将探索使用钯/降冰片烯催化的新型单体合成。对于 GNR 合成,新策略的优点可能非常显着:(i) 将以简化的方式从市售起始材料制备单体;(ii) 通过使用溶液聚合可扩展合成; )将避免使用对空气敏感的中间体,从而简化材料转移过程;(iv)通过避免不稳定的间二甲苯型单元来最大限度地减少芳基-芳基裂解缺陷。有潜力推进对这些类石墨烯准一维聚合物的理解,进而进一步刺激其他新型共轭有机半导体材料的发展。该奖项体现了NSF的法定使命,经评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guangbin Dong其他文献
Stereoselective amination of chiral benzylic ethers using chlorosulfonyl isocyanate: total synthesis of (+)-sertraline.
使用氯磺酰异氰酸酯对手性苄基醚进行立体选择性胺化:()-舍曲林的全合成。
- DOI:
10.1021/jo201794k - 发表时间:
2011-11-16 - 期刊:
- 影响因子:0
- 作者:
Sang Hwi Lee;I. Kim;Q. Li;Guangbin Dong;L. Jeong;Y. Jung - 通讯作者:
Y. Jung
Multicomponent Polymerization for π-Conjugated Polymers.
α-共轭聚合物的多组分聚合。
- DOI:
10.1002/marc.202000646 - 发表时间:
2020-12-16 - 期刊:
- 影响因子:4.6
- 作者:
Ki;Guangbin Dong - 通讯作者:
Guangbin Dong
Programmable Ether Synthesis Enabled by Oxa-Matteson Reaction.
通过 Oxa-Matteson 反应实现可编程醚合成。
- DOI:
10.1021/jacs.2c03621 - 发表时间:
2022-05-09 - 期刊:
- 影响因子:15
- 作者:
Qiqiang Xie;Guangbin Dong - 通讯作者:
Guangbin Dong
Ortho-C–H methoxylation of aryl halides enabled by a polarity-reversed N–O reagent
- DOI:
10.1038/s41557-023-01312-z - 发表时间:
2023-08-31 - 期刊:
- 影响因子:21.8
- 作者:
Xin Liu;Yue Fu;Zhijie Chen;P. Liu;Guangbin Dong - 通讯作者:
Guangbin Dong
Catalytic Intramolecular Ketone Alkylation with Olefins by Dual Activation.
通过双重活化与烯烃催化分子内酮烷基化。
- DOI:
10.1002/anie.201507741 - 发表时间:
2015-12-07 - 期刊:
- 影响因子:0
- 作者:
H. Lim;Guangbin Dong - 通讯作者:
Guangbin Dong
Guangbin Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guangbin Dong', 18)}}的其他基金
Ketone Alkylation Using Simple Olefins: A Sustainable Chemistry Approach
使用简单烯烃进行酮烷基化:一种可持续的化学方法
- 批准号:
2154632 - 财政年份:2022
- 资助金额:
$ 55.5万 - 项目类别:
Standard Grant
New Strategy for Synthesis of Atomically-Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
- 批准号:
2002912 - 财政年份:2020
- 资助金额:
$ 55.5万 - 项目类别:
Standard Grant
Ketone Alkylation Using Simple Olefins: A Sustainable Chemistry Approach
使用简单烯烃进行酮烷基化:一种可持续的化学方法
- 批准号:
1855556 - 财政年份:2019
- 资助金额:
$ 55.5万 - 项目类别:
Standard Grant
New Strategy for Synthesis of Atomically Precise Graphene Nanoribbons
合成原子级精确石墨烯纳米带的新策略
- 批准号:
1707399 - 财政年份:2017
- 资助金额:
$ 55.5万 - 项目类别:
Standard Grant
SusChEM: CAREER: Ketone Alkylation Using Simple Olefins: A Sustainable Chemistry Approach
SusChEM:职业:使用简单烯烃的酮烷基化:一种可持续的化学方法
- 批准号:
1737790 - 财政年份:2016
- 资助金额:
$ 55.5万 - 项目类别:
Standard Grant
SusChEM: CAREER: Ketone Alkylation Using Simple Olefins: A Sustainable Chemistry Approach
SusChEM:职业:使用简单烯烃的酮烷基化:一种可持续的化学方法
- 批准号:
1254935 - 财政年份:2013
- 资助金额:
$ 55.5万 - 项目类别:
Standard Grant
相似国自然基金
战略合成子的可放大合成及在药物合成中的应用
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
合成科学发展战略研究(2021-2035)
- 批准号:
- 批准年份:2019
- 资助金额:50 万元
- 项目类别:专项基金项目
海洋天然产物Psymberin的全合成及其类似物的生物活性研究
- 批准号:21772009
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
高活性、高稳定性、低成本的铜基氧化物光电阴极的合成与研究
- 批准号:21606171
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
绿色合成与可持续化学发展战略研讨会
- 批准号:21342405
- 批准年份:2013
- 资助金额:3.0 万元
- 项目类别:专项基金项目
相似海外基金
Design, Synthesis and Efficacy of New Small Molecule Therapeutics to Impede Myotonic Dystrophy
预防强直性肌营养不良的新型小分子疗法的设计、合成和功效
- 批准号:
10841887 - 财政年份:2023
- 资助金额:
$ 55.5万 - 项目类别:
electrochemical dication pool: a new strategy to couple alkenes and abundant nucleophiles
电化学双阳离子池:偶联烯烃和丰富亲核试剂的新策略
- 批准号:
10635132 - 财政年份:2023
- 资助金额:
$ 55.5万 - 项目类别:
Dissecting Mechanisms of Pyrimidine Synthesis Dependence in IDH Mutant Glioma
IDH 突变胶质瘤中嘧啶合成依赖性的剖析机制
- 批准号:
10464833 - 财政年份:2022
- 资助金额:
$ 55.5万 - 项目类别:
Dissecting Mechanisms of Pyrimidine Synthesis Dependence in IDH Mutant Glioma
IDH 突变胶质瘤中嘧啶合成依赖性的剖析机制
- 批准号:
10612820 - 财政年份:2022
- 资助金额:
$ 55.5万 - 项目类别:
Supplement for Optically Gated Discovery of Protein-Biomolecule Interactions project.
蛋白质-生物分子相互作用光门发现项目的补充。
- 批准号:
10807688 - 财政年份:2022
- 资助金额:
$ 55.5万 - 项目类别: