Rational GAGA and Applications to Field Invariants

Rational GAGA 及其在场不变量中的应用

基本信息

  • 批准号:
    2402367
  • 负责人:
  • 金额:
    $ 49.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Geometric spaces arise in many contexts, and studying their behavior can lead to the solution of real world problems. The study of these spaces has used methods both from algebra and from calculus (also called analysis). Decades ago, a linkage between the algebraic and analytic approaches to geometry was established, which then led to important progress on geometric problems. The PIs will extend this linkage to situations in which information is given only on a piece of a geometric space, rather than on the entire space. This will make it possible to solve open problems concerning the computation of currently mysterious numerical data that relate to the behavior of geometric spaces. The approach will involve studying spaces locally in order to gain a greater insight into their overall behavior. The PIs will also engage in activities that have broader impacts. These include mentoring, widening the pipeline into mathematical research for people from groups traditionally underrepresented in mathematics, and communicating mathematics to a broader audience. In addition, graduate students supported by the award will receive training to contribute toward this research as well as to engage in further mathematical research in the future.More precisely, the PIs will study an analog of Serre's GAGA theorem in the context of function fields of varieties, rather than for the varieties themselves. This will involve a structure sheaf that contains both holomorphic functions and rational functions. A key goal will then be to use this result to compute the conjectured period-index bound for rational function fields over the complex numbers in three or more variables. The PIs also aim to prove related results over more arithmetic ground fields, by bringing in ideas from the theory of formal schemes and building on their prior work in lower dimensions. In addition, the PIs will work to understand the structure of the absolute differential Galois group of real rational function fields. This work is motivated by results that they previously achieved in differential Galois theory over the complex numbers and in classical Galois theory over real function fields. The methods used will include local-global principles and patching, as well as the structure theory of linear algebraic groups, Galois cohomology, and other techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何空间出现在许多情况下,研究它们的行为可以解决现实世界的问题。 对这些空间的研究使用了代数和微积分(也称为分析)的方法。 几十年前,代数和解析几何方法之间的联系被建立起来,这导致了几何问题的重要进展。 PI 将把这种联系扩展到仅给出几何空间的一部分而不是整个空间的信息的情况。 这将使解决与几何空间行为相关的当前神秘数值数据的计算相关的开放问题成为可能。 该方法将涉及局部研究空间,以便更深入地了解其整体行为。 PI 还将参与具有更广泛影响的活动。 其中包括为传统上在数学领域代表性不足的群体提供指导、拓宽数学研究渠道,以及向更广泛的受众传播数学。 此外,受该奖项支持的研究生将接受培训,为这项研究做出贡献,并在未来从事进一步的数学研究。更准确地说,PI 将在函数域的背景下研究 Serre GAGA 定理的模拟品种,而不是品种本身。 这将涉及包含全纯函数和有理函数的结构束。然后,一个关键目标是使用此结果来计算三个或更多变量中的复数上有理函数域的推测周期索引界限。 PI 还旨在通过引入形式方案理论的思想并建立在较低维度的先前工作的基础上,在更多算术基础领域证明相关结果。 此外,PI 将致力于理解实有理函数域的绝对微分伽罗瓦群的结构。 这项工作的动机是他们之前在复数的微分伽罗瓦理论和实函数域的经典伽罗瓦理论中取得的成果。所使用的方法将包括局部全局原理和修补,以及线性代数群的结构理论、伽罗瓦上同调和其他技术。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julia Hartmann其他文献

A C ] 6 F eb 2 01 8 DIFFERENTIAL EMBEDDING PROBLEMS OVER LAURENT SERIES FIELDS
A C ] 6 Feb 2 01 8 洛朗级数域上的差分嵌入问题
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Annette Bachmayr;D. Harbater;Julia Hartmann
  • 通讯作者:
    Julia Hartmann
Weierstrass preparation and algebraic invariants
维尔斯特拉斯准备和代数不变量
  • DOI:
    10.1007/s00208-012-0888-8
  • 发表时间:
    2012-12-16
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    D. Harbater;Julia Hartmann;D. Krashen
  • 通讯作者:
    D. Krashen
On the computation of the differential Galois group
关于微分伽罗瓦群的计算
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Rettstadt;Julia Hartmann
  • 通讯作者:
    Julia Hartmann
On the Inverse Problem in Differential Galois Theory
论微分伽罗瓦理论中的反问题
  • DOI:
    10.11588/heidok.00003085
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Julia Hartmann
  • 通讯作者:
    Julia Hartmann
Differential Embedding Problems over Complex Function Fields
复杂函数域上的微分嵌入问题
  • DOI:
    10.4171/dm/618
  • 发表时间:
    2016-10-28
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Annette Bachmayr;D. Harbater;Julia Hartmann;M. Wibmer
  • 通讯作者:
    M. Wibmer

Julia Hartmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julia Hartmann', 18)}}的其他基金

Higher Function Field Arithmetic
高次函数域算术
  • 批准号:
    2102987
  • 财政年份:
    2021
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
Higher Function Field Arithmetic
高次函数域算术
  • 批准号:
    2102987
  • 财政年份:
    2021
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
Algebraic Structures over Fields of Functions
函数域上的代数结构
  • 批准号:
    1805439
  • 财政年份:
    2018
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
FRG: Collab: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:协作:局部全局原理的障碍及其在代数结构中的应用
  • 批准号:
    1463733
  • 财政年份:
    2015
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Continuing Grant

相似海外基金

末梢性生体反応を用いたストレスマネジメント効果発現メカニズムの検証
利用外周生物反应验证压力管理效果表达机制
  • 批准号:
    20K20865
  • 财政年份:
    2020
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
異種GPCR間の結合を介した新たな小脳運動学習制御機構の解明
阐明不同 GPCR 之间的连接介导的新小脑运动学习控制机制
  • 批准号:
    20K22745
  • 财政年份:
    2020
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Creation of artificial peptidase based on zinc finger framework
基于锌指框架的人工肽酶的创建
  • 批准号:
    20510206
  • 财政年份:
    2008
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation and Pharmaceutical Development of Intelligent Zinc Fingers Based on Genomic Chemistry
基于基因组化学的智能锌指创造及药物开发
  • 批准号:
    20390037
  • 财政年份:
    2008
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
触媒作用を有する人工金属フィンガータンパク質の創製
具有催化活性的人造金属指蛋白的创建
  • 批准号:
    18710190
  • 财政年份:
    2006
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了