Excellence in Research:Towards Data and Machine Learning Fairness in Smart Mobility

卓越研究:实现智能移动中的数据和机器学习公平

基本信息

  • 批准号:
    2401655
  • 负责人:
  • 金额:
    $ 59.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

This project supports research examining the development of fairness-aware methodologies to address prevalent data and machine learning (ML) biases within smart mobility applications. With the advancements in intelligent sensors and computing power, the integration of high-fidelity transportation data with Artificial Intelligence (AI)/ML has become essential for advancing smart mobility applications. This project aims to investigate ways to promote fair, equitable, and responsible AI utilization in tackling diverse smart mobility challenges, such as vehicle trajectory prediction, congestion reduction, safety improvement, and so on. With the primary institution being Morgan State University, an R2 public Historically Black College and University (HBCU), this project fosters research engagement among undergraduate and graduate students, with a focus on individuals from historically marginalized backgrounds. Furthermore, to prepare the future workforce for the evolving technological landscapes in transportation, this project serves as a bridge by connecting STEM learning from K-12 through post-secondary education with cutting-edge AI/ML methods and their applications in smart mobility.This project aims to investigate development of fairness-aware methodologies to mitigate commonly encountered data and ML biases that are often induced from data collection, processing, and modeling within the smart mobility domain. Specifically, this project targets three critical biases throughout the ML application lifecycle: measurement bias, representation bias, and aggregation bias. Customized ML methodologies are devised to mitigate each type of biases, tailored for specific smart mobility applications, including vehicle trajectory correction and prediction, traffic flow and network modeling, origin-destination and traffic demand forecasting, among others. Potential findings from this project can promote fair and equitable applications of ML methods in smart mobility and can have broad impacts on other science and engineering fields, such as smart and autonomous systems, robotics, and other research domains that depend on the responsible utilization of AI/ML. Students from underrepresented groups, particularly African-American students at Morgan State University, are strongly encouraged to participate in the research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目支持研究开发公平意识方法,以解决智能移动应用中普遍存在的数据和机器学习 (ML) 偏差。随着智能传感器和计算能力的进步,高保真交通数据与人工智能 (AI)/ML 的集成已成为推进智能移动应用的关键。该项目旨在研究如何促进公平、公正和负责任的人工智能应用,以应对各种智能移动挑战,例如车辆轨迹预测、减少拥堵、提高安全性等。该项目的主要机构是摩根州立大学,这是一所 R2 公立历史黑人学院和大学 (HBCU),旨在促进本科生和研究生的研究参与,重点关注来自历史边缘背景的个人。此外,为了让未来的劳动力为不断发展的交通技术格局做好准备,该项目充当了一座桥梁,将 K-12 到高等教育的 STEM 学习与尖端的 AI/ML 方法及其在智能移动中的应用连接起来。该项目旨在研究公平意识方法的开发,以减轻智能移动领域内的数据收集、处理和建模中经常遇到的常见数据和机器学习偏差。具体来说,该项目针对整个 ML 应用程序生命周期中的三个关键偏差:测量偏差、表示偏差和聚合偏差。定制的机器学习方法旨在减轻每种类型的偏差,针对特定的智能移动应用量身定制,包括车辆轨迹校正和预测、交通流和网络建模、起点-目的地和交通需求预测等。该项目的潜在发现可以促进机器学习方法在智能移动领域的公平和公正应用,并对其他科学和工程领域产生广泛影响,例如智能和自主系统、机器人技术以及其他依赖于负责任地利用人工智能的研究领域/ML。强烈鼓励来自代表性不足群体的学生,特别是摩根州立大学的非裔美国学生参与这项研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Di Yang其他文献

Self-Supervised Video Representation Learning via Latent Time Navigation
通过潜在时间导航进行自监督视频表示学习
  • DOI:
    10.48550/arxiv.2305.06437
  • 发表时间:
    2023-05-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Di Yang;Yaohui Wang;Quan Kong;A. Dantcheva;L. Garattoni;G. Francesca;F. Brémond
  • 通讯作者:
    F. Brémond
Study on Forest and Grassland Ecological Space Structure in Eyu Mining Area and Potential Alternatives for Enhancing Carbon Sequestration
鄂玉矿区森林草原生态空间结构及增强碳汇潜在替代方案研究
  • DOI:
    10.3390/f14081587
  • 发表时间:
    2023-08-04
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Genwang Wang;Depeng Yue;Q. Yu;Di Yang;Chenglong Xu;Fei Wang
  • 通讯作者:
    Fei Wang
Dynamic Scalability Mechanisms for Microservices in Federated Cloud Platform
联邦云平台中微服务的动态扩展机制
Large-eddy simulation of offshore wind farm
海上风电场大涡模拟
  • DOI:
    10.1063/1.4863096
  • 发表时间:
    2014-02-04
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Di Yang;C. Meneveau;Lian Shen
  • 通讯作者:
    Lian Shen
Carbonate microfacies classification model based on dual neural network: A case study in the Moxi Gas Field, Central Sichuan Basin
基于双神经网络的碳酸盐岩微相分类模型——以川中磨溪气田为例

Di Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Di Yang', 18)}}的其他基金

RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 59.2万
  • 项目类别:
    Standard Grant
Collaborative Research: ELET2: Engaged Learning Environment for Emerging Transportation Technologies
合作研究:ELET2:新兴交通技术的参与式学习环境
  • 批准号:
    2315450
  • 财政年份:
    2023
  • 资助金额:
    $ 59.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Helicity on the Development of Free-Shear Turbulence at High Reynolds Number
合作研究:螺旋度对高雷诺数自由剪切湍流发展的影响
  • 批准号:
    1804214
  • 财政年份:
    2018
  • 资助金额:
    $ 59.2万
  • 项目类别:
    Standard Grant

相似国自然基金

成纤维细胞分泌TGFβ1阻抑CD8+T淋巴细胞上皮向浸润在口腔白斑恶变中的作用机制及靶向干预研究
  • 批准号:
    82301095
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
流体剪切力在胸主动脉瘤向胸主动脉夹层演变中的作用及机制研究
  • 批准号:
    12372315
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
TEA结构域转录因子2调控干细胞亚稳态向基态多能性转变的机理研究
  • 批准号:
    32300466
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Fbxw7缺失促进EGFR突变肺腺癌向肺鳞癌转分化的功能和机制研究
  • 批准号:
    82303039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于颅内外同步静息态脑电与多尺度有向脑网络的致痫区定位研究
  • 批准号:
    82371453
  • 批准年份:
    2023
  • 资助金额:
    65 万元
  • 项目类别:
    面上项目

相似海外基金

(TWIN2EXPAND): Twinning towards Research Excellence in Evidence-Based Planning and Urban Design
(TWIN2EXPAND):在循证规划和城市设计领域结对实现卓越研究
  • 批准号:
    10050784
  • 财政年份:
    2023
  • 资助金额:
    $ 59.2万
  • 项目类别:
    EU-Funded
Excellence in Research: Towards Secure Unmanned Aerial Vehicles-based Systems
卓越的研究:迈向安全的基于无人机的系统
  • 批准号:
    2301553
  • 财政年份:
    2023
  • 资助金额:
    $ 59.2万
  • 项目类别:
    Standard Grant
SDSU FUERTE: Faculty United towards Excellence in Research and Transformational Engagement
SDSU FUERTE:教师团结起来,致力于卓越的研究和变革参与
  • 批准号:
    10362383
  • 财政年份:
    2021
  • 资助金额:
    $ 59.2万
  • 项目类别:
Excellence in Research: Synthesis and Evaluation of Amino Acid-Appended Macromolecules Designed Towards Enhanced Water Purification via Lead Chelation
卓越的研究:通过铅螯合增强水净化的氨基酸附加大分子的合成和评估
  • 批准号:
    2100909
  • 财政年份:
    2021
  • 资助金额:
    $ 59.2万
  • 项目类别:
    Standard Grant
SDSU FUERTE: Faculty United towards Excellence in Research and Transformational Engagement
SDSU FUERTE:教师团结起来,致力于卓越的研究和变革参与
  • 批准号:
    10703225
  • 财政年份:
    2021
  • 资助金额:
    $ 59.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了