Evaluating the complexity of unsteady turbulent flows using excess entropy
使用过剩熵评估非定常湍流的复杂性
基本信息
- 批准号:2400237
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Unsteady turbulent flows are known to be very complicated, but there has not been much effort to assess just how complex they are. The reason for their complexity is that the patterns of flow structures in terms of space and time contain both predictable and random elements. However, predictive laws or probability models cannot fully capture the behavior of such systems. The degree-of-complexity is a measure of how certain or random a flow field is in an unsteady state. This research will evaluate the degree-of-complexity using advanced mathematical methods. The knowledge acquired through this project can be applied to various other fields that involve complexity theory. The research topics explored in this project will be tailored to be suitable for undergraduate research programs and will be shared with K-12 teachers to enrich their class topics.The proposed research attempts to establish a new theoretical framework for quantifying the complexity of unsteady flows. Traditional complexity estimators typically operate on 1D data and are inadequate for analyzing 3D unsteady field results. To address this limitation, the proposed research tackles the issue by utilizing large-scale flow structures as the fundamental unit of analysis, which represent the collective motion of the flow over a defined period. These structures exhibit intricate 3D spatial interactions and can be classified and symbolized based on their topological characteristics, utilizing the persistent homology algorithm. The resulting symbolic sequence is then employed to assess complexity using the excess entropy method. This innovative approach diverges from conventional practices by using recurrent spatial-temporal patterns as the fundamental analysis unit instead of instantaneous fields, thereby enabling the separation of spatial interactions within a finite domain from the long-term evolution of the entire system. Furthermore, the proposed methodology investigates how large-scale structures self-organize to shape the flow, a pursuit that is challenging to achieve through short-time methods (e.g., finite-time Lyapunov exponent) or conventional statistical techniques (such as Reynolds stresses and spectrum). The examination of temporal order among flow patterns also yields insights into the dynamics of coherent structures, shedding light on fundamental inquiries such as the relationship between invariant solutions of the Navier-Stokes equation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
众所周知,不稳定湍流非常复杂,但目前还没有做出太多努力来评估它们到底有多复杂。其复杂性的原因在于,空间和时间方面的流结构模式既包含可预测的元素,也包含随机的元素。然而,预测定律或概率模型无法完全捕捉此类系统的行为。复杂度是流场在非稳态下的确定性或随机性的度量。这项研究将使用先进的数学方法评估复杂程度。通过该项目获得的知识可以应用于涉及复杂性理论的各个其他领域。该项目探索的研究主题将针对本科研究项目进行定制,并将与 K-12 教师共享,以丰富他们的课堂主题。拟议的研究试图建立一个新的理论框架来量化非定常流的复杂性。传统的复杂性估算器通常对 1D 数据进行操作,不足以分析 3D 非稳态现场结果。为了解决这一限制,拟议的研究通过利用大规模流动结构作为分析的基本单位来解决这个问题,这些结构代表了流动在规定时间内的集体运动。这些结构表现出复杂的 3D 空间相互作用,并且可以利用持久同源算法根据其拓扑特征进行分类和符号化。然后使用所得的符号序列来使用超额熵方法来评估复杂性。这种创新方法与传统做法不同,它使用循环时空模式而不是瞬时场作为基本分析单元,从而能够将有限域内的空间相互作用与整个系统的长期演化分离。此外,所提出的方法研究了大规模结构如何自组织来塑造流动,这是通过短时方法(例如有限时间李亚普诺夫指数)或传统统计技术(例如雷诺应力和光谱)。对流动模式之间的时间顺序的检查还可以深入了解相干结构的动力学,揭示诸如纳维-斯托克斯方程不变解之间的关系等基本问题。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huixuan Wu其他文献
Modified horizontal visibility graph and its application in turbulence
改进的水平能见度图及其在湍流中的应用
- DOI:
10.2514/6.2019-1868 - 发表时间:
2019-01-07 - 期刊:
- 影响因子:0
- 作者:
Xingtian Tao;Huixuan Wu - 通讯作者:
Huixuan Wu
The Internal Structure of the Tip Leakage Vortex Within the Rotor of an Axial Waterjet Pump
轴流式喷水泵转子叶尖泄漏涡流的内部结构
- DOI:
10.1115/1.4003065 - 发表时间:
2010-10-10 - 期刊:
- 影响因子:1.7
- 作者:
R. Miorini;Huixuan Wu;J. Katz - 通讯作者:
J. Katz
Mobility and volatility: What is behind the rising income inequality in the United States
流动性和波动性:美国收入不平等加剧的原因是什么
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Huixuan Wu;Yaohan Li - 通讯作者:
Yaohan Li
A persistent homology method with modified filtration to characterize the phase trajectory of a turbulent wake flow
一种采用改进过滤的持久同源方法来表征湍流尾流的相轨迹
- DOI:
10.1063/5.0033509 - 发表时间:
2021-02-26 - 期刊:
- 影响因子:4.6
- 作者:
Huixuan Wu;Xingtian Tao;Z. Zheng - 通讯作者:
Z. Zheng
Cavitation in the Tip Region of the Rotor Blades Within a Waterjet Pump
喷水泵内转子叶片尖端区域的气蚀
- DOI:
10.1115/fedsm2008-55170 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:1.7
- 作者:
Huixuan Wu;F. Soranna;T. Michael;J. Katz;S. Jessup - 通讯作者:
S. Jessup
Huixuan Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huixuan Wu', 18)}}的其他基金
Evaluating the complexity of unsteady turbulent flows using excess entropy
使用过剩熵评估非定常湍流的复杂性
- 批准号:
2327661 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CAREER: Quantification of the kinetic energy of particles in complex flows using magnetic particle tracking
职业:使用磁粒子跟踪量化复杂流中粒子的动能
- 批准号:
2403832 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Evaluating the complexity of unsteady turbulent flows using excess entropy
使用过剩熵评估非定常湍流的复杂性
- 批准号:
2327661 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CAREER: Quantification of the kinetic energy of particles in complex flows using magnetic particle tracking
职业:使用磁粒子跟踪量化复杂流中粒子的动能
- 批准号:
1944187 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
相似国自然基金
三维内转进气道唇口弯曲激波复杂干扰机理研究
- 批准号:12302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向复杂任务的课程强化学习——生成、表示与复用
- 批准号:62306088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
心脏再生复杂动态系统的空间单细胞组学分析算法研究
- 批准号:62372209
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
复杂环境下的水下三维路径规划方法研究
- 批准号:62371405
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
超高强钢复杂构件液氮喷射的非等温变形机理与热成形高效调控
- 批准号:52375492
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
- 批准号:
2339711 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
CAREER: Low-Degree Polynomial Perspectives on Complexity
职业:复杂性的低次多项式视角
- 批准号:
2338091 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Promise Constraint Satisfaction Problem: Structure and Complexity
承诺约束满足问题:结构和复杂性
- 批准号:
EP/X033201/1 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Fellowship
OPUS: Robustness and complexity: how evolution builds precise traits from sloppy components
OPUS:稳健性和复杂性:进化如何从草率的组成部分构建精确的特征
- 批准号:
2325755 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Conference: Tensor Invariants in Geometry and Complexity Theory
会议:几何和复杂性理论中的张量不变量
- 批准号:
2344680 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant