Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms

协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系

基本信息

  • 批准号:
    2350344
  • 负责人:
  • 金额:
    $ 4.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

This proposal will fund the “Trisections Workshop: Connections with Knotted Surfaces,” which will take place at the University of Nebraska-Lincoln from June 24-28, 2024, and the “Trisections Workshop: Connections with Diffeomorphisms,” which will take place at the University of Texas at Austin during one week in the summer of 2025. Workshop attendees will include established experts, early-career researchers, and students, and the program will actively engage all participants. Each morning will feature plenary talks by experts and/or lightning talks highlighting the work of junior researchers. The afternoons will be devoted to working in groups on open problems. This series of regular workshops has been critical to the development of an enthusiastic community of researchers in low-dimensional topology, helping this new and growing area gain momentum and fostering numerous collaborations across career stages and demographics. The organizers take pride in the camaraderie and welcoming atmosphere they strive to create, and many in the community deeply value and appreciate these events. A trisection splits a 4-dimensional space into three simple pieces. Since their introduction roughly a decade ago, trisections have proven to be a successful new tool with which to study smooth 4-manifolds, with numerous articles written in the interim to develop the foundations for trisection theory. An important strength of the theory of trisections is the way it interfaces with a variety of other topics in low-dimensional topology. This interface provides an opportunity to explore many classical areas of 4-manifold topology through a new lens. Such areas include, for example, the study of knotted surfaces in 4-space, diffeomorphisms of 4-manifolds, exotic smooth structures, group actions and (branched) covering spaces, and symplectic structures. The main goal of these workshops is to bring together researchers from multiple areas to propose and to work on open problems, with a particular focus on the inclusion of early career researchers. The workshops are preceded by a series of introductory virtual pre-workshop talks, which serve to bring new researchers up to speed, to facilitate the work to be done in groups, and to incorporate a broader, worldwide audience. The website for the 2024 workshop can be found here: https://sites.google.com/view/tw2024.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maggie Miller其他文献

Community Detection using Graph Eciency
使用图效率进行社区检测
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maggie Miller;Brendan Shah
  • 通讯作者:
    Brendan Shah
RECOVERING LINK DATA FROM THE B-GRAPH OF AN ALTERNATING DIAGRAM
从交替图的 B 图中恢复链接数据
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maggie Miller
  • 通讯作者:
    Maggie Miller
Concordance of Surfaces and the Freedman-Quinn Invariant
曲面一致性和 Freedman-Quinn 不变量
  • DOI:
    10.4171/cmh/518
  • 发表时间:
    2019-12-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Klug;Maggie Miller
  • 通讯作者:
    Maggie Miller
Knotted handlebodies in the 4-sphere and 5-ball
4 球和 5 球的打结手柄
  • DOI:
    10.1016/s0252-9602(09)60075-8
  • 发表时间:
    2021-11-25
  • 期刊:
  • 影响因子:
    1
  • 作者:
    M. Hughes;Seungwon Kim;Maggie Miller
  • 通讯作者:
    Maggie Miller
Knot cobordisms, torsion, and Floer homology
结配边、扭转和弗洛尔同调
  • DOI:
    10.1093/imrn/rnad066
  • 发表时间:
    2019-04-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Juhász;Maggie Miller;Ian Zemke
  • 通讯作者:
    Ian Zemke

Maggie Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maggie Miller', 18)}}的其他基金

PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    2001675
  • 财政年份:
    2020
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Fellowship Award

相似国自然基金

会议培训类:“亚洲生态环境保护:古记录研究的机遇与挑战”国际会议
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    9 万元
  • 项目类别:
董事会会议形式的公司治理效应研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大型会议场馆室内复杂情况下未知信号干扰源三维因子图建模及其定位方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
会议培训类 –生活源排放的环境行为和效应研究培训
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    9 万元
  • 项目类别:
"天然新药素材活性研究"双边会议
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    6 万元
  • 项目类别:

相似海外基金

Collaborative Research: Conference: Conference support for the 2nd RAID Science Planning Workshop
协作研究:会议:对第二届 RAID 科学规划研讨会的会议支持
  • 批准号:
    2348964
  • 财政年份:
    2024
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
  • 批准号:
    2400114
  • 财政年份:
    2024
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317570
  • 财政年份:
    2024
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: 2024 Aspiring PIs in Secure and Trustworthy Cyberspace
协作研究:会议:2024 年安全可信网络空间中的有抱负的 PI
  • 批准号:
    2404951
  • 财政年份:
    2024
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了