Conference: The 2024 Graduate Student Topology and Geometry Conference

会议:2024年研究生拓扑与几何会议

基本信息

  • 批准号:
    2348932
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

This award supports the 21st annual Graduate Student Topology and Geometry Conference, to be held at Michigan State University from April 12-14, 2024. This conference is specifically aimed at graduate students, with many of the talks delivered by student participants. The conference will bring together students in different stages of their graduate studies, and will provide a venue for students from a diverse collection of institutions and geographic regions to come together and interact. It aims to create a highly collaborative and inclusive environment that will stimulate research and foster lasting connections between researchers at particularly crucial moments early in their careers. The conference will also provide a venue for students to hear about cutting edge research from established senior leaders and early-career faculty. A principal goal for this conference is to give graduate students the opportunity to present their research. The majority of the talks at the conference will be given by students, and there will also be a poster session where students can present their work. Graduate students will learn about the current frontiers of research in geometry and topology, within an inclusive and welcoming community of scholars. Talks will range across many active subfields of topology and geometry. There will be plenary talks by Julie Bergner (University of Virginia), Ciprian Manolescu (Stanford University), and Gabor Szekelyhidi (Northwestern University), as well as talks by early-career faculty members Carolyn Abbott (Brandeis University), Anthony Conway (University of Texas at Austin), Colleen Delaney (University of California, Berkeley), Antoine Song (California Institute of Technology), Iris Yoon (Wesleyan University), and Allen Yuan (Institute for Advanced Study/Northwestern University). These faculty talks will also provide the opportunity for early-career researchers to engage with experts outside of their home institution, expanding their network of mathematical scientists. The conference URL is https://sites.google.com/view/gstgc2024msu/homeThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Teena Gerhardt其他文献

Teena Gerhardt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Teena Gerhardt', 18)}}的其他基金

Algebraic K-Theory, Topological Hochschild Homology, and Equivariant Homotopy Theory
代数 K 理论、拓扑 Hochschild 同调和等变同伦理论
  • 批准号:
    2104233
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Trace Methods and Applications for Cut-and-Paste K-Theory
FRG:协作研究:剪切粘贴 K 理论的追踪方法和应用
  • 批准号:
    2052042
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Algebraic K-Theory, Topological Hochschild Homology, and Equivariant Homotopy Theory
代数 K 理论、拓扑 Hochschild 同调和等变同伦理论
  • 批准号:
    2104233
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Algebraic K-Theory and Equivariant Homotopy Theory
代数 K 理论和等变同伦理论
  • 批准号:
    1810575
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
CAREER: Equivariant Homotopy and Algebraic K-Theory
职业:等变同伦和代数 K 理论
  • 批准号:
    1149408
  • 财政年份:
    2012
  • 资助金额:
    $ 3万
  • 项目类别:
    Continuing Grant
Algebraic K-theory and Equivariant Homotopy Theory
代数K理论和等变同伦理论
  • 批准号:
    1007083
  • 财政年份:
    2010
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant

相似国自然基金

ZrO2-GNPs双相协同增强2024Al激光增材制造性能调控与强韧化机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
锂在2024铝合金中的微合金化作用研究
  • 批准号:
    51801157
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
往复墩-挤Al2O3/2024铝基复合材料的变形机制、组织结构演变规律及强韧化机理研究
  • 批准号:
    51271076
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
提高硼酸铝晶须增强2024铝复合材料高温热稳定性和耐磨性的界面设计及性能研究
  • 批准号:
    51201052
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
超高应变对2024铝合金组织结构的影响
  • 批准号:
    59471015
  • 批准年份:
    1994
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: 2024 19th Annual Graduate Students Combinatorics Conference
会议:2024年第19届研究生组合学年会
  • 批准号:
    2334815
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Conference: VL/HCC Graduate Consortium 2024
会议:VL/HCC 研究生联盟 2024
  • 批准号:
    2418038
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Grant for 2024 ACM Conference on Creativity & Cognition (C&C) Graduate and Undergraduate Student Symposia
旅行:2024 年 ACM 创意会议 NSF 学生旅行补助金
  • 批准号:
    2413801
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Undergraduate Travel Support to the International Conference for Infant Studies: 2024 - 2028
本科生参加国际婴儿研究会议的旅行支持:2024 - 2028
  • 批准号:
    10597277
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
2024 Alcohol and the Nervous System Gordon Research Conference and Gordon Research Seminar
2024酒精与神经系统戈登研究会议暨戈登研究研讨会
  • 批准号:
    10827607
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了