CRII: CSR: Adaptive Federated Continuous Learning on Heterogeneous Edge Devices with Unlabeled Data

CRII:CSR:具有未标记数据的异构边缘设备的自适应联合连续学习

基本信息

  • 批准号:
    2348279
  • 负责人:
  • 金额:
    $ 17.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

With the growing success of artificial intelligence (AI) techniques, especially deep neural networks (DNNs), there has been an ongoing push to introduce AI services across different domains, including healthcare, autonomous driving, image processing, and more. Due to data privacy issues and unlabeled client datasets, AI service providers must often collect and label their own datasets, and then train their models offline prior to deployment. However, these pre-trained DNNs may not capture new patterns of online data; they must typically be retrained on user-supplied data. This introduces several challenges: (1) Data Privacy: Users are increasingly concerned about unauthorized access to their private data. (2) Unlabeled Heterogeneous Data: Edge devices are typically deployed in diverse environments and owned by a range of users, leading to substantial variation in the distribution of local data. Users may also lack the motivation and/or expertise to adequately label their data. (3) Device Heterogeneity: Edge devices exhibit a wide spectrum of computing and memory capabilities, and retraining DNN models on such heterogeneous edge devices can be time-consuming. To overcome these challenges, this project proposes an adaptive, federated, continuous learning system, which uses a novel federated, semi-supervised learning framework to retrain DNN models on distributed, unlabeled, heterogeneous data, while leveraging explainable AI techniques to expedite local training. This project holds promise for improving AI service adaptation in real-world scenarios by bolstering privacy, adaptability, and efficiency. It supports seamless integration of AI services across diverse domains, while ensuring data privacy and optimizing model performance on edge/client devices. This project also contains a significant educational component. It will provide opportunities to involve students from groups underrepresented in computing, fostering diversity and inclusion. This will have a positive impact on these students’ education and careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着人工智能 (AI) 技术,尤其是深度神经网络 (DNN) 的日益成功,由于数据隐私,人们一直在推动跨不同领域引入人工智能服务,包括医疗保健、自动驾驶、图像处理等。由于问题和未标记的客户端数据集,人工智能服务提供商通常必须收集并标记自己的数据集,然后在部署之前离线训练其模型。但是,这些预先训练的 DNN 可能无法捕获新的在线数据模式;它们通常必须重新训练。用户提供的数据。引入了几个挑战:(1)数据隐私:用户越来越担心未经授权的访问其私人数据(2)未标记的异构数据:边缘设备通常部署在不同的环境中并由一系列用户拥有,导致数据的巨大差异。用户也可能缺乏充分标记其数据的动力和/或专业知识。 (3) 设备异构性:边缘设备表现出广泛的计算和存储能力,并且可以在此类异构边缘设备上重新训练 DNN 模型。是为了克服这些挑战,该项目提出了一种自适应、联邦、持续学习系统,该系统使用新颖的联邦、半监督学习框架在分布式、未标记、异构数据上重新训练 DNN 模型,同时利用可解释的 AI 技术该项目有望通过增强隐私性、适应性和效率来提高人工智能服务在现实场景中的适应性,它支持跨不同领域的人工智能服务的无缝集成,同时确保数据隐私并优化模型性能。该项目还包含重要的教育内容,它将为来自代表性不足的群体的学生提供参与计算的机会,这将对这些学生的教育和职业产生积极的影响。该奖项反映了 NSF 的贡献。法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Letian Zhang其他文献

High reliable and stable organic field-effect transistor nonvolatile memory with a poly(4-vinyl phenol) charge trapping layer based on a pn-heterojunction active layer
基于pn异质结有源层的具有聚(4-乙烯基苯酚)电荷捕获层的高可靠稳定有机场效应晶体管非易失性存储器
  • DOI:
    10.1063/1.4947576
  • 发表时间:
    2016-04-25
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Lanyi Xiang;Jun Ying;Jinhua Han;Letian Zhang;Wei Wang
  • 通讯作者:
    Wei Wang
Carrier transport manipulation for efficiency enhancement in blue phosphorescent organic light-emitting devices with a 4,4′-bis(N-carbazolyl)-2,2′-biphenyl host
载流子传输操纵以提高具有 4,4-双(N-咔唑基)-2,2-联苯主体的蓝色磷光有机发光器件的效率
  • DOI:
    10.1039/c8tc06265j
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Ziwei Yu;Haiwei Feng;Jiaxin Zhang;Shihao Liu;Yi Zhao;Letian Zhang;W. Xie
  • 通讯作者:
    W. Xie
Trusting Talent: Cross-Country Differences in Hiring
信任人才:招聘方面的跨国差异
  • DOI:
    10.2139/ssrn.4609113
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Letian Zhang;Shinan Wang
  • 通讯作者:
    Shinan Wang
Northward Channel flow in Northern Tibet revealed
藏北向北水道流量揭示
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenbo Wei;F. Pape;Alan G. Jones;J. Vozár;Hao Dong;Sheng Jin;G. Ye;J. Jing;Letian Zhang;Cheng;Xie
  • 通讯作者:
    Xie
On formulas for Dedekind sums and the number of lattice points in tetrahedra
关于戴德金和和四面体格点数的公式
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Yau;Letian Zhang
  • 通讯作者:
    Letian Zhang

Letian Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

准社会互动视角下CSR数字化沟通对品牌绩效的差异化影响、机制与管理对策
  • 批准号:
    72362008
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
信号理论视角下的企业社会责任逆向解耦策略研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“双碳”目标视域下企业社会责任对碳排放的作用机理、实现路径与行为演化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
平台型企业社会责任行为内在驱动机制与能力构建研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
共同富裕目标下企业社会责任的实现路径及绩效研究
  • 批准号:
    72272171
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CSR: Medium: Adaptive Environmental Awareness for Collaborative Augmented Reality
协作研究:企业社会责任:媒介:协作增强现实的自适应环境意识
  • 批准号:
    2312762
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Adaptive Environmental Awareness for Collaborative Augmented Reality
协作研究:企业社会责任:媒介:协作增强现实的自适应环境意识
  • 批准号:
    2312761
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Adaptive Environmental Awareness for Collaborative Augmented Reality
协作研究:企业社会责任:媒介:协作增强现实的自适应环境意识
  • 批准号:
    2312760
  • 财政年份:
    2023
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Continuing Grant
CRII: CSR: Systems and Tooling Enabling Adaptive Intermittent Computing
CRII:CSR:支持自适应间歇计算的系统和工具
  • 批准号:
    1850496
  • 财政年份:
    2019
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Dynamic Reconfiguration for Adaptive Computing in Heterogeneous SoCs
CSR:小型:协作研究:异构 SoC 中自适应计算的动态重新配置
  • 批准号:
    1526687
  • 财政年份:
    2015
  • 资助金额:
    $ 17.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了