Uncovering the Underlying Biophysical Mechanisms of Directed Cell Migration

揭示定向细胞迁移的潜在生物物理机制

基本信息

  • 批准号:
    2345411
  • 负责人:
  • 金额:
    $ 104.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-15 至 2027-12-31
  • 项目状态:
    未结题

项目摘要

Matrix-guided cell migration is fundamental to tissue formation, and its dysregulation is crucial in various diseases. Despite this importance, how cells coordinate probing their environment with forward movement remains unknown. This project examines actin cytoskeletal networks and adhesion receptors as integral yet distinct subsystems — akin to an airplane’s wings and tail, which are critical for lift, stability, and steering. Just as both the ailerons and rudder are necessary for an airplane’s maneuvering yet are ineffective in isolation, this project will explore the interdependence of actin network subsystems in steering and powering cell migration. Using nanofabricated matrices designed to direct cellular behavior towards single migration behaviors, the study will identify the parts within each subsystem and how they interact to create matrix-guided migration. The broader impacts include engaging high school students in cell motility challenge experiments using student-designed nanofabricated matrices and establishing ‘The A-mazing Cell Races’ website to present the results and engage the public with the dynamics of cell biology. The project’s innovative strategy of forcing a single cellular function and identifying the parts that create the function is a transformative approach to studying complex systems that cannot be separated using traditional biochemical or molecular approaches. Cells use actin-based protrusions to probe the ECM for places to bind and form anchors to pull themselves forward. Extensive studies have revealed that protrusions contain multiple actin networks with different structures. However, understanding each network’s role in probing and forward movement has been limited. The networks cannot be isolated without inducing compensatory effects, and they cannot probe or bind ECM without receptors. Yet, the networks are not thought to connect to receptors until the receptors bind to ECM. This proposal targets these significant gaps by considering actin networks and ECM receptors as complex systems, an assembly of parts that produces more functionality than its components. However, as many of us learned as children who took something apart to figure out how it worked and ended up with a box of parts that could not be put back together, some hidden randomness, hierarchy, or collective dynamic essential for functionality disappears when pieces are removed. This project will study ECM-guided cell migration as a complex system composed of non-separable, hierarchical, interactive, dynamic ECM receptor–actin network subsystems that regulate probing and forward migration. Using nanofabricated ECM substrates will identify the subsystems and determine how they respond to substrate cues at the cellular, sub-cellular, and single-molecule levels. Challenging the cells to engage multiple subsystems to navigate complex challenges using ECM mazes will define the subsystem hierarchy of action for each choice and enable the use of graph theory to model cells navigating these complex challenges.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基质引导的细胞迁移是组织形成的基础,其失调在各种疾病中至关重要,但细胞如何协调探索其环境和向前运动仍然未知。 — 类似于飞机的机翼和尾翼,它们对于升力、稳定性和转向至关重要,就像副翼和方向舵对于飞机的操纵来说是必要的,但孤立起来是无效的,该项目将探索肌动蛋白网络子系统在引导和驱动细胞迁移方面的相互依赖性,该研究将确定每个子系统内的各个部分以及它们如何相互作用以产生基质引导的迁移的更广泛的影响。包括让高中生使用学生设计的纳米制造基质进行细胞运动挑战实验,并建立“The A-mazing Cell Races”网站来展示结果并让公众了解细胞生物学的动态。该项目的创新策略是强制实现单一细胞功能并识别产生该功能的部分,这是一种革命性的方法,用于研究无法使用传统生化或分子方法分离的复杂系统。细胞使用基于肌动蛋白的突起来探测 ECM 的位置。广泛的研究表明,突起包含多个具有不同结构的肌动蛋白网络,但是,对每个网络在探测和向前运动中的作用的了解还很有限。然而,在受体与 ECM 结合之前,这些网络被认为不会与受体连接。该提案通过将肌动蛋白网络和 ECM 受体视为复杂的系统(一个集合体)来解决这些重大缺陷。然而,正如我们许多人小时候所学到的那样,他们把一些东西拆开来弄清楚它是如何工作的,最终得到了一盒无法组装在一起的零件,一些隐藏的随机性、层次结构,或对功能至关重要的集体动力消失时该项目将研究 ECM 引导的细胞迁移,作为一个由不可分离、分层、交互、动态 ECM 受体-肌动蛋白网络子系统组成的复杂系统,可调节探测和前向迁移。确定它们如何在细胞、亚细胞和单分子水平上响应底物线索使用 ECM 迷宫挑战细胞以参与多个子系统以应对复杂的挑战将定义子系统层次结构。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Catherine Galbraith其他文献

Catherine Galbraith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

受体ChemR23通过ATF5调控成纤维细胞极化介导特发性肺纤维化的机制研究和潜在药靶鉴定
  • 批准号:
    82373875
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
长白山区泥炭地植物-微生物级联关系对土壤磷潜在可用性的生物调控机制
  • 批准号:
    42371097
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
玉米植株吐水中的农药残留形成机制及其潜在生态风险研究
  • 批准号:
    32372608
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
阿司匹林丁香酚酯促进高脂血症大鼠胆汁酸代谢的分子机制与潜在靶点挖掘
  • 批准号:
    32373071
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高维因子模型中潜在误差序列的统计推断问题
  • 批准号:
    12301330
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FX ENTRAIN: Perturbation of neurodynamics underlying sensory hyperarousal and statistical learning in Youth with FXS
FX ENTRAIN:FXS 青少年感觉过度唤醒和统计学习背后的神经动力学扰动
  • 批准号:
    10585050
  • 财政年份:
    2023
  • 资助金额:
    $ 104.95万
  • 项目类别:
Identifying mechanisms underlying sex differences in motoneuron discharge
识别运动神经元放电性别差异的机制
  • 批准号:
    10751793
  • 财政年份:
    2023
  • 资助金额:
    $ 104.95万
  • 项目类别:
Unexpected mechanism underlying mislocalization of thrombocytopenia-associated ETV6 point mutation
血小板减少症相关 ETV6 点突变错误定位的意外机制
  • 批准号:
    10605685
  • 财政年份:
    2023
  • 资助金额:
    $ 104.95万
  • 项目类别:
Structural and functional principles underlying germline genome transmission
种系基因组传播的结构和功能原理
  • 批准号:
    10535616
  • 财政年份:
    2022
  • 资助金额:
    $ 104.95万
  • 项目类别:
Mechanisms underlying centriole morphogenesis
中心粒形态发生的机制
  • 批准号:
    10549843
  • 财政年份:
    2022
  • 资助金额:
    $ 104.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了