Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics

合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享

基本信息

  • 批准号:
    2344341
  • 负责人:
  • 金额:
    $ 17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Mobile Internet measurement is critical to network design, resource allocation, and troubleshooting network issues. However, sharing of mobile Internet measurement data can potentially compromise user privacy. Given the wide introduction of artificial intelligence to mobile Internet measurement and traffic analytics, there is an urgent need for data sharing solutions that provide explainability in terms of the trade-offs among data quality, utility and quantity. To close the gap, the objective of this project is to develop new methods to augment data with explainable data quality and utility, to access and share collected data in a privacy-preserving manner, and to collaboratively analyze Internet data with intelligence and autonomy.This collaborative project brings together investigators from University of Nebraska-Lincoln, Utah State University, and University of Wisconsin-Madison. It aims to lay a solid foundation for mobile Internet measurement with privacy preservation, collaborative and distributed intelligence, and autonomy. Methodologies and methods will be developed for quality-explainable data synthesis and augmentation; privacy-preserving data sharing; and collaborative and privacy-preserving analysis of Internet measurement data. Moreover, a mobile Internet traffic generator will be developed for evaluating the proposed methods. This project can significantly advance the prior research in Internet traffic analytics, quality-explainable and privacy-preserving data processing, mobile Internet traffic analytics, distributed artificial intelligence and machine learning algorithms, optimizations, modeling, simulations, and testbed experiments. The research efforts associated with this project will greatly advance the understandings of the critical issues in the next-generation mobile Internet measurement with distributed and collaborative intelligence to provide privacy-preserving data sharing and Internet traffic analytics. The outcomes of the project can potently foster the transition of our society into data sharing with privacy and intelligent era. Research and education will be integrated in this project by introducing emerging mobile Internet measurement and privacy-preserving data processing with advanced topics such as 6G wireless systems, data augmentation, artificial intelligence and machine learning models into the current curricula in the three collaborative institutions.The project website is hosted at: cns.unl.edu/imr-ppds. The collected data, simulation codes, and publication list will be published on the project website. Copies of technical reports and accepted manuscripts will also be published on the project website. The website will be maintained during the project years, and remain accessible for least 2 years after the completion of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
移动互联网测量对于网络设计、资源分配和网络问题排查至关重要。然而,共享移动互联网测量数据可能会损害用户隐私。鉴于人工智能广泛应用于移动互联网测量和流量分析,迫切需要数据共享解决方案,以在数据质量、效用和数量之间的权衡方面提供可解释性。为了缩小差距,该项目的目标是开发新方法,以可解释的数据质量和效用来增强数据,以保护隐私的方式访问和共享收集的数据,并以智能和自主的方式协作分析互联网数据。合作项目汇集了来自内布拉斯加大学林肯分校、犹他州立大学和威斯康星大学麦迪逊分校的研究人员。旨在为具有隐私保护、协作和分布式智能以及自治性的移动互联网测量奠定坚实的基础。将开发用于质量可解释的数据合成和增强的方法和方法;保护隐私的数据共享;以及互联网测量数据的协作和隐私保护分析。此外,还将开发移动互联网流量生成器来评估所提出的方法。该项目可以显着推进互联网流量分析、质量可解释和隐私保护数据处理、移动互联网流量分析、分布式人工智能和机器学习算法、优化、建模、模拟和测试台实验等方面的先前研究。与该项目相关的研究工作将极大地促进对下一代移动互联网测量中关键问题的理解,通过分布式和协作智能来提供保护隐私的数据共享和互联网流量分析。该项目的成果可以有力地促进我们的社会向隐私数据共享和智能时代的转变。该项目将把研究和教育融为一体,将新兴的移动互联网测量和隐私保护数据处理以及 6G 无线系统、数据增强、人工智能和机器学习模型等高级主题引入三个合作机构的当前课程中。项目网站托管于:cns.unl.edu/imr-ppds。收集的数据、模拟代码和发布列表将在项目网站上发布。技术报告和接受的手稿的副本也将在项目网站上发布。该网站将在项目期间进行维护,并在项目完成后至少 2 年内保持可访问性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng Ye其他文献

D2D-Assisted Physical-Layer Security in Next-Generation Mobile Network
下一代移动网络中 D2D 辅助的物理层安全
Deep Learning-Based Recognizing COVID-19 and other Common Infectious Diseases of the Lung by Chest CT Scan Images
基于深度学习的胸部 CT 扫描图像识别 COVID-19 和其他常见肺部传染病
  • DOI:
    10.1101/2020.03.28.20046045
  • 发表时间:
    2020-03-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Min Fu;Shuang;Yu;Feng Ye;Yuxuan Li;Xuan Dong;Yan;Linkai Luo;Jin;Qi Zhang
  • 通讯作者:
    Qi Zhang
A low-power, wireless, real-time, wearable healthcare system
低功耗、无线、实时、可穿戴医疗保健系统
  • DOI:
    10.1109/ieee-iws.2016.7912155
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhihong Lin;Feng Ye;W. Qin;Xiaofei Cao;Yanchao Wang;Rongtao Hu;R. Yan;Yajie Qin;Ting Yi;Zhiliang Hong
  • 通讯作者:
    Zhiliang Hong
Hydrological time series prediction based on IWOA-ALSTM.
基于IWOA-ALSTM的水文时间序列预测。
  • DOI:
    10.1038/s41598-024-58269-3
  • 发表时间:
    2024-04-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Xuejie Zhang;Hao Cang;N. Nedjah;Feng Ye;Yanling Jin
  • 通讯作者:
    Yanling Jin
Multi-technique experimental characterization of a PEM electrolyzer cell with interdigitated-jet hole flow field
叉指式射流孔流场质子交换膜电解池的多技术实验表征
  • DOI:
    10.1016/j.enconman.2024.118276
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Kaichen Wang;Yufei Wang;Zhangying Yu;Feng Xiao;La Ta;Feng Ye;Chao Xu;Jianguo Liu
  • 通讯作者:
    Jianguo Liu

Feng Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng Ye', 18)}}的其他基金

Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
  • 批准号:
    2319488
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Collaborative Research: Expedite CSI Processing with Lightweight AI in Massive MIMO Communication Systems
合作研究:在大规模 MIMO 通信系统中利用轻量级 AI 加速 CSI 处理
  • 批准号:
    2336234
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Collaborative Research: Expedite CSI Processing with Lightweight AI in Massive MIMO Communication Systems
合作研究:在大规模 MIMO 通信系统中利用轻量级 AI 加速 CSI 处理
  • 批准号:
    2139569
  • 财政年份:
    2022
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: IMR: MM-1A: Functional Data Analysis-aided Learning Methods for Robust Wireless Measurements
合作研究:IMR:MM-1A:用于稳健无线测量的功能数据分析辅助学习方法
  • 批准号:
    2319343
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1C: Methods for Active Measurement of the Domain Name System
合作研究:IMR:MM-1C:域名系统主动测量方法
  • 批准号:
    2319368
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319593
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Collaborative Research: IMR: MM-1C: Methods for Active Measurement of the Domain Name System
合作研究:IMR:MM-1C:域名系统主动测量方法
  • 批准号:
    2319367
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR:MM-1B: Privacy in Internet Measurements Applied To WAN and Telematics
合作研究:IMR:MM-1B:应用于广域网和远程信息处理的互联网测量隐私
  • 批准号:
    2319409
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了