CAREER: Elucidating trans-kingdom horizontal gene transfer mechanisms to improve plant genetic engineering

职业:阐明跨界水平基因转移机制以改进植物基因工程

基本信息

  • 批准号:
    2340175
  • 负责人:
  • 金额:
    $ 82.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2029-01-31
  • 项目状态:
    未结题

项目摘要

Plants lie at the heart of many potential solutions to the climate crisis. Yet, it can take years to develop plants with new, useful features. Plant transformation and negative public opinion are widely recognized as the main bottlenecks to engineering new plant varieties. This team will pursue an integrated research and education plan to spur innovation in plant genetic engineering. The research will generate foundational knowledge related trans-kingdom DNA transfer between Agrobacterium and plants, which will be used to develop plant transformation tools that improve the speed and complexity of genetic manipulation achievable in plants. In parallel, the PI will develop a summer program for students enrolled in their National Education Equity Lab course: BIOE80 “Introduction to Bioengineering.” The PI already works with the National Education Equity lab – a non-profit that provides low-income (Title 1) high school students with an opportunity to earn free college credits by taking college courses from college professors. The proposed summer addition to BIOE80 will give students an opportunity to gain hands-on experience with the genetic engineering techniques learned in their lecture-based course. It will serve as much needed bridge between the students’ theoretical understanding of bioengineering concepts and the research experience needed to pursue internships and higher education in STEM field. Ultimately, the course and proposed research should strengthen U.S. plant engineering discourse and research should help more fully realize the potential of plant biotechnology for a sustainable future.Trans-kingdom transfer of DNA from Agrobacterium to plants is a stunning biological feat and the basis of powerful plant biotechnology tools. Despite being the most commonly used tool for introducing new DNA to plants, several important gaps in our understanding of Agrobacterium-mediated DNA transfer remain – including the dynamics and mechanisms of transferred DNA (T-DNA) integration into the plant genome. This knowledge gap has prevented the generation of plant genome engineering tools that can be used to reliably control the insertion location of transgenes in plants’ genomes and limits the speed and complexity of genetic perturbation achievable in plants. The proposed research will investigate the temporal dynamics of T-DNA delivery and T-DNA fate (integration or degradation) in plant cells after the two most common plant transformation procedures: floral dip and in vitro conjugation to callus. The team will use a new synthetic genetic system, developed by the PI, that can record T-DNA delivery to dissect these complex biological processes with unprecedented precision. Then, newly acquired information will be used to create molecular tools for plant genome editing without T-DNA integration. This work will contribute to the bioeconomy by generating the foundational knowledge needed to develop increasingly sophisticated plant genome engineering tools and setting the stage for the long-term goal of precisely engineering plants in order to improve climate resilience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物是应对气候危机的许多潜在解决方案的核心,然而,开发具有新的、有用的功能的植物可能需要数年时间。植物转化和负面舆论被广泛认为是设计新植物品种的主要瓶颈。该团队将推行一项综合研究和教育计划,以促进植物基因工程的创新,该研究将产生与农杆菌和植物之间的跨界 DNA 转移相关的基础知识,这些知识将用于开发植物转化工具,以提高植物转化的速度和复杂性。基因操纵可实现与此同时,PI 将为参加国家教育公平实验室课程 BIOE80“生物工程概论”的学生开发一个暑期项目。PI 已经与国家教育公平实验室(一个为低收入群体提供服务的非营利组织)合作。 (标题 1)高中生有机会通过参加大学教授的大学课程来获得免费的大学学分 BIOE80 拟议的夏季补充课程将使学生有机会获得在讲座中学到的基因工程技术的实践经验。基于它将成为学生对生物工程概念的理论理解与在 STEM 领域实习和接受高等教育所需的研究经验之间的桥梁,最终,该课程和拟议的研究将有助于加强美国植物工程的讨论和研究。尽管是将新 DNA 引入植物的最常用工具,但从农杆菌到植物的 DNA 跨界转移是一项令人惊叹的生物学壮举,也是强大的植物生物技术工具的基础。 ,几个重要的我们对农杆菌介导的 DNA 转移的理解仍然存在差距,包括转移 DNA (T-DNA) 整合到植物基因组中的动力学和机制,这种知识差距阻碍了可用于可靠控制的植物基因组工程工具的产生。转基因在植物基因组中的插入位置,并限制了植物中可实现的遗传扰动的速度和复杂性。拟议的研究将研究转基因后植物细胞中 T-DNA 传递和 T-DNA 命运(整合或降解)的时间动态。二最常见的植物转化程序:花浸和体外与愈伤组织接合 该团队将使用 PI 开发的新的合成遗传系统,该系统可以记录 T-DNA 的传递,以前所未有的精度剖析这些复杂的生物过程。获得的信息将用于创建无需 T-DNA 整合的植物基因组编辑分子工具。这项工作将通过生成开发日益复杂的植物基因组工程工具所需的基础知识并为长期目标奠定基础,为生物经济做出贡献。精确设计工厂以提高该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Brophy其他文献

Jennifer Brophy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

线粒体DNA损伤的机制阐明及其作为农药亚致死性暴露生物标志物的应用
  • 批准号:
    82373538
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
鉴定赖氨酸感知受体并阐明其调节代谢内稳态的机制
  • 批准号:
    32371231
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
Cyclooctatin型抗肿瘤二萜生物合成途径阐明及化学多样性拓展
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于菌植根系代谢交流和正反向分析策略阐明番茄根际微生物核心菌群介导植物抗病机制
  • 批准号:
    42177112
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
新型-抗毒化碳限域磷化物异质结电解海水催化剂的设计与制备:阐明水分子和氯离子的竞争及效能增强机理
  • 批准号:
    22109090
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidating the Origin of Sudden Cardiac Death in Dilated Cardiomyopathy: from Phenotype Predictors to Therapeutic Targets
阐明扩张型心肌病心脏性猝死的起源:从表型预测因子到治疗靶点
  • 批准号:
    10658201
  • 财政年份:
    2023
  • 资助金额:
    $ 82.15万
  • 项目类别:
Elucidating the Structural Bases of HIV-1-Induced CD4 Degradation
阐明 HIV-1 诱导的 CD4 降解的结构基础
  • 批准号:
    10698255
  • 财政年份:
    2023
  • 资助金额:
    $ 82.15万
  • 项目类别:
Elucidating the Structural Bases of HIV-1-Induced CD4 Degradation
阐明 HIV-1 诱导的 CD4 降解的结构基础
  • 批准号:
    10698255
  • 财政年份:
    2023
  • 资助金额:
    $ 82.15万
  • 项目类别:
Elucidating the functional mechanism of NLRP3 inflammasome activation
阐明NLRP3炎症小体激活的功能机制
  • 批准号:
    10720435
  • 财政年份:
    2023
  • 资助金额:
    $ 82.15万
  • 项目类别:
Elucidating the role of Adaptor Protein complex-4 in regulating axonal autophagic and lysosomal pathways
阐明衔接蛋白复合物 4 在调节轴突自噬和溶酶体途径中的作用
  • 批准号:
    10700082
  • 财政年份:
    2022
  • 资助金额:
    $ 82.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了