CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
基本信息
- 批准号:2340085
- 负责人:
- 金额:$ 55.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2029-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYScientists are on a fascinating mission to create super-tough materials that withstand extreme conditions like blistering heat, immense pressure, and even radiation. One way to achieve this is to use a special ingredient known as "interfaces," which are like secret codes in nanostructured composites that determine their unique properties. Recently, an exciting discovery was made – unveiling a new type of interface known as a "3D interface." It's like adding a new dimension to materials and holds immense potential. However, there's a twist – scientists don't fully understand how these 3D interfaces function, especially when they face radiation. The focus of this research is to use a material called Cu-Nb as a model to decode the secrets of these 3D interfaces. Two primary goals have been set: firstly, to understand the inner workings of these 3D interfaces at the tiniest atomic level, essentially taking a super-close look at them. Secondly, to explore how these 3D interfaces respond when exposed to radiation. This research will recruit high school students. The aim is to inspire the next generation's interest in science and engineering by offering research opportunities, workshops, and hands-on lab experiences, and to help prepare them for careers in the energy industry. Because these new materials have the potential to revolutionize the way we build things, particularly in the realm of nuclear energy, they could make nuclear reactors safer at lower cost. But the impact goes far beyond that – it can influence various areas, such as improving electronic devices like computer transistors. So, this mission is about understanding science and nurturing students' curiosity, preparing them for exciting careers, and ultimately collaborating with energy companies to create a better, more sustainable world. TECHNICAL SUMMARYThe PI’s research fundamentally focuses on developing advanced materials with exceptional resilience to extreme environmental conditions, encompassing high temperatures, mechanical stress, and radiation exposure. The materials in question are distinguished by their intricate microstructures, particularly the interfaces existing within them, which play a defining role in dictating their properties. A novel dimension in material science was unveiled with the discovery of 3D interfaces, a relatively new and intricate class of interfacial structures. These 3D interfaces exhibit a unique character, characterized by variations in chemical and structural attributes spanning a few atomic layers to tens of nanometers along the interface's normal direction. However, the underlying mechanisms governing the behavior of 3D interfaces, particularly in response to radiation, have remained a subject of limited understanding. This research focuses on a model material system, Cu-Nb, chosen for its suitability in exploring the intricacies of 3D interfaces. The primary research objectives encompass quantifying the varying short-range structural and chemical ordering within 3D interface structures and predicting and validating the stability and transition kinetics of these 3D interfaces when exposed to radiation. This entails a multi-faceted approach involving integrated experiments and computational modeling, with cross-validation playing a pivotal role. The significance of this work extends far beyond the confines of material science and into various practical domains. It has the potential to help identify structural materials that can endure the extreme irradiation conditions found in advanced nuclear reactors, which is an ongoing and critical challenge in the realm of nuclear energy. Furthermore, the insights derived from this research could hold relevance for interface-dominant behavior in diverse contexts, including the behavior of ultra-thin doping layers in advanced electronic components, such as FinFET transistors. Beyond its technical merits, this research strongly emphasizes outreach and education. It seeks to inspire and support both university students and local high school students, especially those from underrepresented groups, in their pursuit of careers in the energy industry. This educational component encompasses research opportunities, workshops, and hands-on laboratory experiences, aligning with the overarching goal of preparing the next generation of materials scientists and engineers for a range of applications across the energy sector and beyond.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要科学家们肩负着一项令人着迷的使命,即创造出能够承受酷热、巨大压力甚至辐射等极端条件的超坚韧材料,实现这一目标的一种方法是使用一种称为“界面”的特殊成分,它就像最近,一项令人兴奋的发现——揭示了一种称为“3D 界面”的新型界面,这就像为材料添加了一个新的维度,并拥有巨大的空间。然而,有一个转折点——科学家们并不完全了解这些 3D 界面的运作方式,尤其是当它们面临辐射时。这项研究的重点是使用一种称为 Cu-Nb 的材料作为模型来解码这些 3D 的秘密。设定了两个主要目标:首先,在最小的原子级别上了解这些 3D 界面的内部工作原理,本质上是超仔细地观察它们;其次,探索这些 3D 界面在暴露时如何响应。这项研究将招募高中生,目的是通过提供研究机会、研讨会和实验室实践经验来激发下一代对科学和工程的兴趣,并帮助他们为能源行业的职业生涯做好准备。因为这些新材料有可能彻底改变我们的建造方式,特别是在核能领域,它们可以以更低的成本使核反应堆更安全,但其影响远远不止于此——它可以影响各个领域,例如改进。因此,这个任务是关于理解计算机晶体管等电子设备。科学和培养学生的好奇心,为他们从事激动人心的职业做好准备,并最终与能源公司合作创造一个更美好、更可持续的世界。 技术摘要PI的研究从根本上侧重于开发对极端环境条件(包括高温、所讨论的材料以其复杂的微观结构而著称,特别是其中存在的界面,这些界面在决定其性能方面发挥着决定性作用,随着以下发现的出现,材料科学中的一个新维度被揭开了。 3D 界面是一类相对较新且复杂的界面结构,这些 3D 界面表现出独特的特征,其特征是沿着界面法线方向跨越几个原子层到数十纳米的化学和结构属性。 3D 界面的行为,特别是对辐射的响应,仍然是一个人们了解有限的主题。这项研究的重点是 Cu-Nb 模型材料系统,选择它是因为它适合探索 3D 界面的复杂性。主要研究目标是量化 3D 界面结构中不同的短程结构和化学排序,并包括预测和验证这些 3D 界面在暴露于辐射时的稳定性和转变动力学,这需要采用多方面的方法集成实验和计算建模,交叉验证发挥着关键作用,这项工作的意义远远超出了材料科学的范围,并有可能帮助识别能够承受先进极端辐照条件的结构材料。此外,这项研究得出的见解可能与不同背景下的界面主导行为相关,包括先进电子元件中超薄掺杂层的行为。除了技术优点外,这项研究还大力强调宣传和教育,旨在激励和支持大学生和当地高中生,特别是那些来自弱势群体的学生,追求能源行业的职业生涯。这个教育部分包括研究机会、研讨会和实验室实践经验,符合为能源领域及其他领域的一系列应用培养下一代材料科学家和工程师的总体目标。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Youxing Chen其他文献
Plastic flow of Fe-binary alloys—I. A description at low temperatures
Fe-二元合金的塑性流动——I.低温下的描述
- DOI:
10.1016/0001-6160(81)90068-7 - 发表时间:
1981-06-01 - 期刊:
- 影响因子:0
- 作者:
Youxing Chen;D. Atteridge;W. Gerberich - 通讯作者:
W. Gerberich
High-Throughput Nanoindentation Mapping of Additively Manufactured T91 Steel
增材制造 T91 钢的高通量纳米压痕测绘
- DOI:
10.1007/s11837-022-05189-0 - 发表时间:
2022-03-04 - 期刊:
- 影响因子:2.6
- 作者:
Moujhuri Sau;E. Hintsala;Youxing Chen;D. Stauffer;S. Maloy;B. P. Eftink;T. Lienert;N. Mara - 通讯作者:
N. Mara
Atomistic analysis of plastic deformation and shear band formation in FCC/FCC metallic nanolayered composites
FCC/FCC 金属纳米层复合材料塑性变形和剪切带形成的原子分析
- DOI:
10.1557/s43578-023-00898-x - 发表时间:
2023-02-02 - 期刊:
- 影响因子:2.7
- 作者:
S. Dong;Xiang;Youxing Chen;Caizhi Zhou - 通讯作者:
Caizhi Zhou
Simultaneous High-Strength and Deformable Nanolaminates With Thick Biphase Interfaces.
具有厚双相界面的同时高强度和可变形纳米层压材料。
- DOI:
10.1021/acs.nanolett.1c04144 - 发表时间:
2022-02-21 - 期刊:
- 影响因子:10.8
- 作者:
Justin Y. Cheng;Shuozhi Xu;Youxing Chen;Zezhou Li;J. Baldwin;I. Beyerlein;N. Mara - 通讯作者:
N. Mara
Real Aperture Continuous Terahertz Imaging System and Spectral Refinement Method
实孔径连续太赫兹成像系统及光谱细化方法
- DOI:
10.3390/photonics10091020 - 发表时间:
2023-09-06 - 期刊:
- 影响因子:2.4
- 作者:
Kailiang Xue;Wenna Zhang;Zhaoba Wang;Yong Jin;Xin Guo;Youxing Chen - 通讯作者:
Youxing Chen
Youxing Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Youxing Chen', 18)}}的其他基金
Reducing Chemical Wear of Single Crystal Diamond Tools Cutting Alloys
减少单晶金刚石工具切削合金的化学磨损
- 批准号:
1728554 - 财政年份:2017
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant
相似国自然基金
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
- 批准号:52371115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
冷原子中基于相干增强弱光非线性的非互易光传输量子调控
- 批准号:62375047
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
冷原子系统中跳频锁定深紫外冷却激光的产生和应用研究
- 批准号:62375284
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于原子阱痕量分析的41Ca核素产率模型和暴露测年研究
- 批准号:42373053
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
氮锚定的原子级分散非贵金属催化剂丙烷脱氢制丙烯研究
- 批准号:22378379
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
An Atomic Level Understanding of Optimal Characteristics of TiO2 Protection Layers and Photoelectrode/TiO2 Interfaces for Efficient and Stable Solar Fuel Production
从原子水平了解 TiO2 保护层和光电极/TiO2 界面的最佳特性,以实现高效、稳定的太阳能燃料生产
- 批准号:
2350199 - 财政年份:2024
- 资助金额:
$ 55.58万 - 项目类别:
Continuing Grant
Atomic level structural control and characterisation of perovskite quantum dots
钙钛矿量子点的原子级结构控制与表征
- 批准号:
22KJ0994 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Developing a Computational Workflow to Quantify Atomic-level Allosteric Mechanisms
职业:开发计算工作流程来量化原子级变构机制
- 批准号:
2238706 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant
Atomic-Level Insight into Photoinduced Transformations in Perovskite Optoelectronics
钙钛矿光电子学中光致转变的原子级洞察
- 批准号:
EP/Y01376X/1 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Research Grant
CAREER: Advancing Atomic-Level Understanding of Kinetically Driven Solid-Solid Phase Transitions from First Principles and Machine Learning
职业:从第一原理和机器学习推进对动力学驱动的固-固相变的原子级理解
- 批准号:
2238516 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Continuing Grant