CAREER: Learning Theory for Large-scale Stochastic Games

职业:大规模随机博弈的学习理论

基本信息

  • 批准号:
    2339240
  • 负责人:
  • 金额:
    $ 40.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2029-01-31
  • 项目状态:
    未结题

项目摘要

In modern financial markets and economic systems with large populations, decision-making has evolved into a multifaceted process involving various aspects such as population heterogeneity, diverse information structures, and human-AI interactions. This project aims to develop new learning frameworks and mathematical foundations that strengthen our understanding of the stability, efficiency, and fairness of societal systems with large populations. Novel frameworks developed in this research are designed to have flexible model assumptions, be able to learn from incomplete information, and accommodate heterogeneous risk preferences as well as information asymmetry. This research will involve both undergraduate and graduate students, emphasizing cross-disciplinary training in mathematics and machine learning. Additionally, an outreach program will be established to engage underrepresented groups in STEM.This project places at its core the mathematical advancement of machine learning theory for stochastic systems with many interacting agents, known as “mean-field games”. The first goal is to develop new mathematical models and learning algorithms for mean-field games under structural properties such as graphon interactions or additional summary statistics of the population distribution. This development relies on new approximation schemes and stability analyses based on the local propagation of flows. The second goal focuses on principal-agent problems, where agents have diverse risk preferences or the capability to acquire new information. These topics pose significant challenges in a dynamic setting, leading to a novel class of stochastic partial differential equations that require new developments for well-definedness and regularity theory. The final goal focuses on constructing generative models (simulators) with interactive mean-field agents, addressing the scalability issue in agent-based simulator literature. To leverage the computational power of neural networks, a key objective is to establish a universal approximation theorem in the distributional sense and the convergence of an iterative deep-learning scheme to train the simulator.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在人口众多的现代金融市场和经济体系中,决策已演变成一个多方面的过程,涉及人口异质性、多样化的信息结构和人机交互等各个方面。该项目旨在开发新的学习框架和数学基础。加强我们对人口众多的社会系统的稳定性、效率和公平性的理解。本研究中开发的新框架旨在具有灵活的模型假设,能够从不完整的信息中学习,并适应异质风险偏好和信息不对称。 .这项研究将涉及本科生和研究生,强调数学和机器学习的跨学科培训。此外,还将建立一个外展计划,以吸引 STEM 中代表性不足的群体。该项目的核心是随机系统的机器学习理论的数学进步。交互代理,称为“平均场博弈”,第一个目标是在图子交互或人口分布的附加汇总统计等结构特性下开发新的平均场博弈数学模型和学习算法。近似方案和稳定性基于流量的局部传播的分析侧重于委托代理问题,其中代理具有不同的风险偏好或获取新信息的能力,这些主题在动态环境中提出了重大挑战,导致了一种新型的随机问题。偏微分方程需要明确定义和规律性理论的新发展,最终目标侧重于利用交互式平均场代理构建生成模型(模拟器),解决基于代理的模拟器文献中的可扩展性问题。神经网络,一个关键目标是建立分布意义上的通用逼近定理和迭代深度学习方案的收敛来训练模拟器。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和能力进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Renyuan Xu其他文献

Mean-Field Controls with Q-Learning for Cooperative MARL: Convergence and Complexity Analysis
用于协作 MARL 的 Q-Learning 平均场控制:收敛性和复杂性分析
  • DOI:
    10.1137/20m1360700
  • 发表时间:
    2020-02-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haotian Gu;Xin Guo;Xiaoli Wei;Renyuan Xu
  • 通讯作者:
    Renyuan Xu
Policy Gradient Converges to the Globally Optimal Policy for Nearly Linear-Quadratic Regulators
政策梯度收敛于近线性二次调节器的全局最优政策
  • DOI:
    10.48550/arxiv.2303.08431
  • 发表时间:
    2023-03-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yin;Meisam Razaviyayn;Renyuan Xu
  • 通讯作者:
    Renyuan Xu
Recent advances in reinforcement learning in finance
金融领域强化学习的最新进展
  • DOI:
    10.1111/mafi.12382
  • 发表时间:
    2021-12-08
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    B. Hambly;Renyuan Xu;Huining Yang
  • 通讯作者:
    Huining Yang
Tail-GAN: Nonparametric Scenario Generation for Tail Risk Estimation
Tail-GAN:尾部风险估计的非参数场景生成
  • DOI:
    10.2139/ssrn.3812973
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Cont;Mihai Cucuringu;Chao Zhang;Renyuan Xu
  • 通讯作者:
    Renyuan Xu
Model-free Analysis of Dynamic Trading Strategies
动态交易策略的无模型分析

Renyuan Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

离散物理系统的通用几何图学习理论方法
  • 批准号:
    62376276
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
接触丰富的零部件装配动态力-位图像学习理论及控制方法
  • 批准号:
    52375519
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向大规模强化学习任务的预测控制理论与方法研究
  • 批准号:
    62376179
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
理论指导的融合辅助信息的自监督学习研究
  • 批准号:
    62376010
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
高可信联邦图学习基础理论与方法研究
  • 批准号:
    62376103
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Theory and Algorithms for Learning with Frozen Pretrained Models
职业:使用冻结的预训练模型进行学习的理论和算法
  • 批准号:
    2339978
  • 财政年份:
    2024
  • 资助金额:
    $ 40.96万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 40.96万
  • 项目类别:
    Continuing Grant
CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
  • 批准号:
    2338506
  • 财政年份:
    2024
  • 资助金额:
    $ 40.96万
  • 项目类别:
    Continuing Grant
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
  • 批准号:
    2339588
  • 财政年份:
    2024
  • 资助金额:
    $ 40.96万
  • 项目类别:
    Continuing Grant
Building a Community-Based Mental Health Literacy Intervention for African American Young Adults
为非裔美国年轻人建立基于社区的心理健康素养干预措施
  • 批准号:
    10738855
  • 财政年份:
    2023
  • 资助金额:
    $ 40.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了