CAREER: Leveraging Data Science & Policy to Promote Sustainable Development Via Resource Recovery
职业:利用数据科学
基本信息
- 批准号:2339025
- 负责人:
- 金额:$ 54.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-08-01 至 2029-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The waste management sector is transitioning from an “out of site, out of mind” approach to a resource recovery approach in which valuable energy and fertilizer can be recovered. This resource recovery approach is driven by national and global challenges related to population growth, climate change, and resource scarcity. Rural agricultural regions are prime locations for resource recovery because they are typically abundant in organic waste streams such as animal manure and agricultural crop residues while also requiring fertilizer for crop production. Rural agricultural regions may generate so much organic waste that excess waste is shipped to other watersheds. Therefore, these regions could receive increased economic benefits and reduced environmental impacts if the excess waste was not shipped out and instead used as a feedstock for the recovery of energy and nutrients. However, such rural regions face challenges in implementing resource recovery technologies due to limited technical and economic resources, unavailable or inaccessible data, and lack of contextual policy support. Accordingly, the overarching goal of this CAREER project is to promote sustainable, context-sensitive resource recovery in rural regions. Successful completion of research and educational objectives on the topics of data science, life cycle modeling, policy, and stakeholder engagement will provide a data-driven, cost-effective framework to bridge the gap between research and implementation of resource recovery technologies in rural agricultural regions. Stakeholder engagement and policy dissemination will facilitate increased adoption of best practices for organic waste management.Current organic waste management practices such as landfilling and incineration negatively impact the environment by emitting greenhouse gases, harmful contaminants, and pathogens. However, recovery of resources such as energy and nutrients from organic waste can reduce such negative impacts. The goal of this CAREER project is to develop, apply, and assess a data-driven framework that integrates data science, life cycle modeling, and policy analysis to promote sustainable, context-sensitive resource recovery in rural agricultural regions. The recent emergence of powerful data science tools can effectively predict outcomes such as recovery efficiency, economic impacts, and environmental impacts. While larger wastewater utilities are beginning to use data science methods to improve treatment efficiency and reduce chemical and energy use, the use of data science in rural organic waste management is unexplored. Therefore, an opportunity exists to utilize data science tools with accessible datasets and generalized methods integrated with stakeholder engagement and contextual policy support. This strategy can provide a data-driven, cost-effective framework to bridge the gap between research and implementation of resource recovery technologies in rural farming regions. Implementation of this framework could allow rural farming regions nationally and internationally to strategically utilize their organic waste to best reflect their environmental, economic, social, political, and geographical context. The long-term educational goal is to increase the “impact competencies” in civil engineering students by providing training and practice on sustainable development, data science, and policy. In pursuit of this, the educational objectives of this proposal include integrating undergraduate and graduate learning modules and creating a pathway within the civil engineering MS curriculum that includes one year of stateside community-engaged service integrated with a research thesis. Broader impacts of the educational plan result from stakeholder engagement with community partners in undergraduate and graduate courses and providing needed yet underrepresented skills in data science and policy to undergraduate students that they can use to transition to the marketplace or graduate school.This project is jointly funded by the CBET/ENG Environmental Sustainability program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
废物管理部门正在从“场外、心不在焉”的方法转变为可以回收宝贵的能源和化肥的资源回收方法,这种资源回收方法是由与人口增长、气候相关的国家和全球挑战推动的。农村农业地区是资源回收的主要地点,因为它们通常富含动物粪便和农作物残留物等有机废物,同时农村农业地区可能会产生大量有机废物。多余的废物被运往其他流域。因此,如果多余的废物不被运走,而是用作能源和养分回收的原料,这些地区可以获得更大的经济效益并减少环境影响。然而,由于资源回收技术有限,这些农村地区在实施资源回收技术方面面临挑战。技术和经济资源、无法获得或无法获取数据以及缺乏背景政策支持。因此,该职业项目的总体目标是促进农村地区可持续、环境敏感的资源回收,成功完成有关该主题的研究和教育目标。数据科学、生命周期建模、政策和利益相关者的参与将提供一个数据驱动的、具有成本效益的框架,以弥合农村农业地区资源回收技术的研究和实施之间的差距。利益相关者的参与和政策传播将促进更多地采用有机废物管理的最佳实践。目前的有机废物管理做法(例如填埋和焚烧)会排放温室气体、有害污染物和病原体,从而对环境产生负面影响,但是,从有机废物中回收能源和营养物等资源可以减少这种负面影响。是开发、应用和评估一个数据驱动的框架,该框架集成了数据科学、生命周期建模和政策分析,以促进农村农业地区可持续的、情境敏感的资源回收。最近出现的强大数据科学工具可以有效地进行预测。虽然大型废水处理厂开始使用数据科学方法来提高处理效率并减少化学品和能源的使用,但数据科学在农村有机废物管理中的应用尚未得到探索。存在利用具有可访问数据集的数据科学工具和该战略可以提供一个数据驱动的、具有成本效益的框架,以缩小农村农业地区资源回收技术的研究和实施之间的差距。在国内和国际上战略性地利用有机废物,以最好地反映其环境、经济、社会、政治和地理背景。长期教育目标是通过提供可持续发展的培训和实践来提高土木工程学生的“影响力”。发展、数据科学和政策。其中,该提案的教育目标包括整合本科生和研究生的学习模块,并在土木工程硕士课程中创建一条途径,其中包括一年的美国社区参与服务以及教育计划产生的更广泛影响。利益相关者在本科和研究生课程中与社区合作伙伴互动,并为本科生提供数据科学和政策方面所需但代表性不足的技能,使他们可以利用这些技能过渡到市场或研究生院。该项目由 CBET/ENG 环境可持续发展计划共同资助和制定刺激竞争性研究计划 (EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Orner其他文献
Kevin Orner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Orner', 18)}}的其他基金
Collaborative Research: IRES Track I: US-Costa Rica Collaboration to Quantify the Holistic Benefits of Resource Recovery in Small-Scale Communities
合作研究:IRES 第一轨:美国-哥斯达黎加合作量化小规模社区资源回收的整体效益
- 批准号:
2246348 - 财政年份:2023
- 资助金额:
$ 54.89万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 54.89万 - 项目类别:
Continuing Grant
Leveraging natural and engineered genetic barcodes from single cell RNA sequencing to investigate cellular evolution, clonal expansion, and associations between cellular genotypes and phenotypes
利用单细胞 RNA 测序中的天然和工程遗传条形码来研究细胞进化、克隆扩增以及细胞基因型和表型之间的关联
- 批准号:
10679186 - 财政年份:2023
- 资助金额:
$ 54.89万 - 项目类别:
Leveraging mHealth to Increase Health Equity among Black Individuals with Opioid Use Disorder and Commonly Occurring Mental Health Disorders
利用移动医疗提高患有阿片类药物使用障碍和常见心理健康障碍的黑人的健康公平
- 批准号:
10722105 - 财政年份:2023
- 资助金额:
$ 54.89万 - 项目类别:
Leveraging Molecular Technologies to Improve Diagnosis and Management of Pediatric Acute Respiratory Illness in Resource-Constrained Settings
利用分子技术改善资源有限环境中儿科急性呼吸系统疾病的诊断和管理
- 批准号:
10739603 - 财政年份:2023
- 资助金额:
$ 54.89万 - 项目类别:
Leveraging Automated Optimization of Inspired Oxygen and Oxidized Biomarker Lipidomics for Targeted Oxygenation during Mechanical Ventilation: a Pragmatic Clinical Trial
利用吸入氧和氧化生物标志物脂质组学的自动优化在机械通气期间进行靶向氧合:一项实用的临床试验
- 批准号:
10592000 - 财政年份:2023
- 资助金额:
$ 54.89万 - 项目类别: