CAREER: Symbolic Learning with Neural Language Models
职业:使用神经语言模型进行符号学习
基本信息
- 批准号:2338833
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence (AI) systems today are very effective at learning statistical knowledge from large amounts of data. However, they are less effective at learning the forms of knowledge that we as humans might communicate in language to each other, such as the rules of a game, a food recipe, or the process of filling out your taxes. These forms of knowledge are symbolic, meaning that they can be represented as sentences in language, or, alternatively, as computer code. In this project the investigator will develop new AI methods for learning symbolic knowledge represented as computer code, combining ideas from statistics, large language models such as ChatGPT, and program synthesis (how to automatically generate computer software). The scientific impact of this research will be AI systems that learn more abstract forms of knowledge, from fewer examples, and which are more understandable to humans, because the systems will describe what they know in languages we can understand. This research will also involve student researchers, especially those from underrepresented groups. It will also inform new graduate and undergraduate classes, including the new Cornell undergraduate AI class, which serves around 150 students each semester. In more detail, this work addresses the problem of learning symbolic knowledge. Symbolic representations already form the cornerstone of automated planning, proof assistants, and other important applications, but the ability to learn symbolic knowledge is less mature compared to our ability to manually encode such knowledge. The work is organized around the observation that general-purpose programming languages like Python are very effective at representing certain kinds of symbolic knowledge, and also that pretrained neural language models are adept at generating such code. Based on these observations, the project adopts a framing that combines symbolic knowledge, Bayesian learning for uncertainty estimation, program synthesis, and neural language models for code generation and efficient probabilistic inference. The proposed work could ultimately benefit planning and model-based sequential decision-making, help us better understand human thinking and learning in computational terms, and take steps toward further automating software engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如今的人工智能 (AI) 系统在从大量数据中学习统计知识方面非常有效。然而,它们在学习我们人类可能用语言相互交流的知识形式方面效果较差,例如游戏规则、食物食谱或填写税款的过程。这些形式的知识是象征性的,这意味着它们可以表示为语言中的句子,或者也可以表示为计算机代码。在这个项目中,研究人员将结合统计学、ChatGPT 等大型语言模型和程序合成(如何自动生成计算机软件)的思想,开发新的人工智能方法来学习以计算机代码表示的符号知识。这项研究的科学影响将是人工智能系统能够从更少的例子中学习更抽象形式的知识,并且这些知识更容易被人类理解,因为这些系统将以我们可以理解的语言描述它们所知道的内容。这项研究还将涉及学生研究人员,特别是来自代表性不足群体的学生研究人员。它还将为新的研究生和本科生课程提供信息,包括新的康奈尔大学本科生人工智能课程,该课程每学期为大约 150 名学生提供服务。更详细地说,这项工作解决了学习符号知识的问题。符号表示已经成为自动规划、证明助手和其他重要应用的基石,但与我们手动编码这些知识的能力相比,学习符号知识的能力还不太成熟。这项工作是围绕这样的观察进行的:Python 等通用编程语言在表示某些类型的符号知识方面非常有效,而且预训练的神经语言模型也擅长生成此类代码。基于这些观察,该项目采用的框架结合了符号知识、用于不确定性估计的贝叶斯学习、程序合成以及用于代码生成和高效概率推理的神经语言模型。拟议的工作最终可能有利于规划和基于模型的顺序决策,帮助我们更好地理解人类在计算方面的思维和学习,并采取措施进一步实现软件工程自动化。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Ellis其他文献
Discovering Quantum Circuit Components with Program Synthesis
通过程序综合发现量子电路组件
- DOI:
10.1088/2632-2153/ad4252 - 发表时间:
2023-05-02 - 期刊:
- 影响因子:0
- 作者:
Leopoldo Sarra;Kevin Ellis;F. Marquardt - 通讯作者:
F. Marquardt
Modeling Expertise with Neurally-Guided Bayesian Program Induction
神经引导贝叶斯程序归纳的建模专业知识
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Catherine Wong;Kevin Ellis;Mathias Sablé;J. Tenenbaum - 通讯作者:
J. Tenenbaum
Library learning for neurally-guided Bayesian program induction
用于神经引导贝叶斯程序归纳的库学习
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kevin Ellis;Lucas Morales;Mathias Sablé;Armando Solar;J. Tenenbaum - 通讯作者:
J. Tenenbaum
Modeling Human-like Concept Learning with Bayesian Inference over Natural Language
利用自然语言的贝叶斯推理模拟类人概念学习
- DOI:
10.48550/arxiv.2306.02797 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Kevin Ellis - 通讯作者:
Kevin Ellis
Determination of the optimal configuration for a photovoltaic array depending on the shading condition
根据遮光条件确定光伏阵列的最佳配置
- DOI:
10.1016/j.solener.2013.05.028 - 发表时间:
2013-09-01 - 期刊:
- 影响因子:6.7
- 作者:
Hongmei Tian;Hongmei Tian;F. Mancilla–David;Kevin Ellis;E. Muljadi;P. Jenkins - 通讯作者:
P. Jenkins
Kevin Ellis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Ellis', 18)}}的其他基金
SHF: Small: Synthesizing Mixed Discrete/Continuous Programs with the Neurosymbolic Librarian
SHF:小型:与神经符号图书馆员综合混合离散/连续程序
- 批准号:
2310350 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
从象征性到实质性:企业多重地位视角下的制造企业数字创新行为研究
- 批准号:72272133
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Investigating Symbolic Computation in the Brain: Neural Mechanisms of Compositionality
研究大脑中的符号计算:组合性的神经机制
- 批准号:
10644518 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
CPS: Small: Neuro-Symbolic Learning and Control with High-Level Knowledge Inference
CPS:小型:具有高级知识推理的神经符号学习和控制
- 批准号:
2304863 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CPS: Small: Neuro-Symbolic Learning and Control with High-Level Knowledge Inference
CPS:小型:具有高级知识推理的神经符号学习和控制
- 批准号:
2304863 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
EAGER: A hybrid dialogue system architecture for symbolic control of deep learning networks
EAGER:用于深度学习网络符号控制的混合对话系统架构
- 批准号:
2232307 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
EAGER: Advancing Neuro-symbolic AI with Deep Knowledge-infused Learning
EAGER:通过深度知识注入学习推进神经符号人工智能
- 批准号:
2133842 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant