CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
基本信息
- 批准号:2338752
- 负责人:
- 金额:$ 60.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-01 至 2029-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The integration of metal and polymer in a multi-material architecture has found widespread applications in fields ranging from 3D electronics, antennas, sensors, and actuators to quantum science and metamaterials. However, the fabrication of patternable metallic structures within intricate 3D polymer objects using conventional microfabrication techniques such as lithography, deposition, and etching presents formidable challenges. Existing additive manufacturing (AM)-based hybrid processes for 3D metal-plastic components are beset by high cost, time intensiveness, complexity, and constraints on design flexibility. This Faculty Early Career Development (CAREER) award supports research investigating an innovative, electrically-assisted multimaterial AM approach. Success of this project will enable selective construction of metalized layouts in specific regions of a 3D polymer matrix. The creation of multi-material architectures with complex patterns using a singular process in a standard room environment will become possible. Educational outreach activities will foster diversity and encourage the active participation of minority and underrepresented students in the exciting realm of multi-material 3D printing.This CAREER project aims to elucidate the processing mechanism of an innovative multimaterial AM technique. The primary goal is to explore development of scalable manufacturing intricate meta-polymer architectures using a single process by seamlessly integrating programmable electrical fields with photopolymerization. This project seeks to advance scientific comprehension of the intricate impact of design patterns and parameters of electrical fields on the distribution and morphology of deposited metallic structures onto a polymer matrix's surface. In addition, this project aims to deepen scientific understanding by establishing interconnected correlations among interfacial microstructures, surface roughness, printing efficiency, and the mechanical performance of the bioinspired meta-polymer architectures. This research will investigate the influences of thermal conduction, diffusion, and printing solution chemistry on the growth of metallic architectures. The acquired insights are poised to contribute significantly to the development of functional metal/polymer architectures applicable across energy, aerospace, and thermal applications. Anticipated outcomes include a comprehensive understanding of the underlying mechanisms governing the fabrication of complex metallic/polymer structures, providing a theoretical foundation for multimaterial additive manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金属和聚合物在多材料架构中的集成已在 3D 电子、天线、传感器和执行器到量子科学和超材料等领域得到广泛应用。然而,使用光刻、沉积和蚀刻等传统微加工技术在复杂的 3D 聚合物物体内制造可图案化金属结构面临着巨大的挑战。现有的基于增材制造 (AM) 的 3D 金属塑料部件混合工艺受到成本高、时间密集、复杂性和设计灵活性限制的困扰。该学院早期职业发展 (CAREER) 奖项支持对创新型电辅助多材料增材制造方法的研究。该项目的成功将能够在 3D 聚合物矩阵的特定区域选择性地构建金属化布局。在标准房间环境中使用单一工艺创建具有复杂图案的多材料建筑将成为可能。教育推广活动将促进多样性,并鼓励少数族裔和代表性不足的学生积极参与令人兴奋的多材料 3D 打印领域。该职业项目旨在阐明创新多材料 AM 技术的处理机制。主要目标是通过将可编程电场与光聚合无缝集成,探索使用单一工艺开发可扩展制造的复杂元聚合物架构。该项目旨在促进对电场设计模式和参数对聚合物基体表面沉积金属结构的分布和形态的复杂影响的科学理解。此外,该项目旨在通过建立界面微结构、表面粗糙度、打印效率和仿生元聚合物结构的机械性能之间的相互关联来加深科学理解。这项研究将研究热传导、扩散和印刷溶液化学对金属结构生长的影响。所获得的见解将为适用于能源、航空航天和热应用的功能性金属/聚合物架构的开发做出重大贡献。预期成果包括对控制复杂金属/聚合物结构制造的基本机制的全面理解,为多材料增材制造提供理论基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和技术进行评估,被认为值得支持。更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiangjia Li其他文献
Water Collection: 3D‐Printed Cactus‐Inspired Spine Structures for Highly Efficient Water Collection (Adv. Mater. Interfaces 2/2020)
集水:3D 打印的仙人掌脊柱结构可实现高效集水(Adv. Mater. Interfaces 2/2020)
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Xiangjia Li;Yang Yang;Luyang Liu;Yiyu Chen;Ming Chu;Haofan Sun;Weitong Shan;Yong Chen - 通讯作者:
Yong Chen
3D printing biomimetic materials and structures for biomedical applications
用于生物医学应用的 3D 打印仿生材料和结构
- DOI:
10.1007/s42242-020-00117-0 - 发表时间:
2021-01-03 - 期刊:
- 影响因子:7.9
- 作者:
Yizhen Zhu;Dylan Joralmon;Weitong Shan;Yiyu Chen;Jiahui Rong;Hanyu Zhao;Siqi Xiao;Xiangjia Li - 通讯作者:
Xiangjia Li
Second harmonic generation of laser beams in transverse mode locking state
横向锁模态激光束的二次谐波产生
- DOI:
- 发表时间:
- 期刊:
- 影响因子:17.3
- 作者:
Zilong Zhang;Yuan Gao;Xiangjia Li;Xin Wang;Suyi Zhao;Qiang Liu;Changming Zhao - 通讯作者:
Changming Zhao
Electrically Assisted Vat Photopolymerization of Bioinspired Hierarchical Structures with Controllable Roughness for Hydrophobicity Enhancement Using Photocurable Resin/Carbon Nanotube
利用光固化树脂/碳纳米管增强疏水性的具有可控粗糙度的仿生分层结构的电辅助还原光聚合
- DOI:
10.1007/s11837-023-05889-1 - 发表时间:
2023-05-22 - 期刊:
- 影响因子:2.6
- 作者:
Tengteng Tang;Gana Sai Kiran Avinash Raj Dwarampudi;Xiangjia Li - 通讯作者:
Xiangjia Li
Mask Video Projection-Based Stereolithography With Continuous Resin Flow
基于掩模视频投影的连续树脂流立体光刻技术
- DOI:
10.1115/1.4043765 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Yong Chen;Huachao Mao;Xiangjia Li - 通讯作者:
Xiangjia Li
Xiangjia Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiangjia Li', 18)}}的其他基金
Collaborative Research: 3D Printing of Bioinspired Hierarchical Structures with Controllable Roughness for Stable and Long-term Air Retention
合作研究:3D 打印具有可控粗糙度的仿生分层结构,以实现稳定和长期的空气保留
- 批准号:
2114119 - 财政年份:2021
- 资助金额:
$ 60.09万 - 项目类别:
Standard Grant
相似国自然基金
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Mechanisms and Functions of Unconventional Intercellular Calcium Waves in Electrically Non-excitable Cells
电不可兴奋细胞中非常规细胞间钙波的机制和功能
- 批准号:
10714066 - 财政年份:2023
- 资助金额:
$ 60.09万 - 项目类别:
Identifying Electrically Coupled Networks in vitro
体外识别电耦合网络
- 批准号:
10504163 - 财政年份:2022
- 资助金额:
$ 60.09万 - 项目类别:
Identifying Electrically Coupled Networks in vitro
体外识别电耦合网络
- 批准号:
10673919 - 财政年份:2022
- 资助金额:
$ 60.09万 - 项目类别:
Visual Form Perception Produced by Electrically Stimulating Human Visual Cortex
电刺激人类视觉皮层产生的视觉形式感知
- 批准号:
10459612 - 财政年份:2021
- 资助金额:
$ 60.09万 - 项目类别:
Novel on-chip UV absorption spectrometer using electrically tunable photodetector
使用电可调光电探测器的新型片上紫外吸收光谱仪
- 批准号:
530252-2018 - 财政年份:2021
- 资助金额:
$ 60.09万 - 项目类别:
Collaborative Research and Development Grants