CAREER: Connecting eukaryotic electron transfer components to nitrogenase using a bacterial chassis
职业:使用细菌底盘将真核电子传递组件连接到固氮酶
基本信息
- 批准号:2338085
- 负责人:
- 金额:$ 103.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2029-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Important advancements in our understanding of biological nitrogen fixation, bolstered by emerging synthetic biology tools, suggest we are closer than ever to engineering plants to fix nitrogen. Engineering plants to fix nitrogen could improve the sustainability of the bioeconomy. However, we lack the knowledge to predict the behavior and specificity of electron carriers such as ferredoxin, which are needed to power nitrogenase. There is a critical need to test eukaryotic electron transfer components for their ability to interact with nitrogenase and measure how changes in the cellular redox environment sustain electron flow. The overall objective of the research proposed here is to use a bacterial chassis to rapidly define how eukaryotic electron transfer components can participate in electron delivery to nitrogenase and invent a powerful platform for evolution of synthetic electron flow pathways. The research aims synergize with educational goals by incorporating a semester-long project that focuses on bioengineering nitrogen fixation into existing courses using a novel culturally responsive pedagogical framework.The central hypothesis for the project is that electron transfer to nitrogenase is one of the primary constraints preventing introduction of this enzyme into eukaryotic systems, but it is possible to select for variants in eukaryotic electron transfer components to overcome this bottleneck. To test this hypothesis, the investigator proposes to develop a new tool to analyze electron flow to nitrogenase. This tool will use a bacterial chassis to test eukaryotic electron transfer components at physiological levels and evolve these electron transfer components for enhanced electron flow to nitrogenase. Such a contribution would be significant because it would enable more accurate predictions regarding nitrogenase functionality within plant organelles and would establish a robust platform for optimizing electron transfer to nitrogenase. This would not only make the goal of engineering plants to fix nitrogen more attainable, but it would also further our understanding of the determinants of electron flow and how electron transfer pathways can be optimized for biotechnological purposes. This project is supported by the Systems and Synthetic Biology Cluster of the Division of Molecular and Cellular Biosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在新兴的合成生物学工具的支持下,我们对生物固氮的理解取得了重要进展,这表明我们比以往任何时候都更接近工程化植物来固氮。改造植物固氮可以提高生物经济的可持续性。然而,我们缺乏预测电子载体(例如为固氮酶提供动力所需的铁氧还蛋白)的行为和特异性的知识。迫切需要测试真核电子转移成分与固氮酶相互作用的能力,并测量细胞氧化还原环境的变化如何维持电子流。这里提出的研究的总体目标是使用细菌底盘快速定义真核电子传递组件如何参与电子传递到固氮酶,并为合成电子流路径的进化发明一个强大的平台。该研究旨在利用一种新颖的文化响应式教学框架,将一个为期一个学期的专注于生物工程固氮的项目纳入现有课程,从而与教育目标产生协同作用。该项目的中心假设是,电子转移到固氮酶是阻止固氮酶的主要限制之一。将这种酶引入真核系统,但可以选择真核电子转移成分的变体来克服这一瓶颈。为了检验这一假设,研究人员建议开发一种新工具来分析流向固氮酶的电子流。该工具将使用细菌底盘在生理水平上测试真核电子转移成分,并进化这些电子转移成分以增强电子流向固氮酶。这样的贡献将是意义重大的,因为它将能够更准确地预测植物细胞器内固氮酶的功能,并将建立一个强大的平台来优化固氮酶的电子转移。这不仅使工程植物固氮的目标更容易实现,而且还将进一步加深我们对电子流决定因素以及如何针对生物技术目的优化电子转移途径的理解。该项目得到了分子和细胞生物科学部系统和合成生物学集群的支持。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathryn Fixen其他文献
Kathryn Fixen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
I-Afadin调控三细胞间连接开闭在良性输尿管狭窄中的作用及其机制研究
- 批准号:82370691
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于脑连接组学探索卒中后慢性失语症分类及针刺干预疗效预测的神经影像标记物研究
- 批准号:82374555
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
BAG5在精子头颈连接部组装及无头精子症中的分子调控机制研究
- 批准号:82371625
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
E3泛素连接酶NEDD4在异种肝移植术后单核细胞激活中的作用和机制研究
- 批准号:82371793
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
连接组蛋白H1错义点突变在非霍奇金B细胞淋巴瘤中的病理学机制研究
- 批准号:32300435
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Carotenoid coloration in an evolutionary radiation: Connecting molecular function, fitness, and diet ecology in wood warblers
职业:进化辐射中的类胡萝卜素着色:连接林莺的分子功能、健康和饮食生态学
- 批准号:
2337828 - 财政年份:2024
- 资助金额:
$ 103.62万 - 项目类别:
Continuing Grant
Developing and Testing Innovations: Connecting Indigenous Culture and Integrated STEM in Hawaii Through Smart AgTech
开发和测试创新:通过智能农业技术将夏威夷的土著文化与综合 STEM 联系起来
- 批准号:
2342700 - 财政年份:2024
- 资助金额:
$ 103.62万 - 项目类别:
Standard Grant
Connecting the lifecycles of galaxies and their central black holes
连接星系及其中心黑洞的生命周期
- 批准号:
MR/Y019539/1 - 财政年份:2024
- 资助金额:
$ 103.62万 - 项目类别:
Fellowship
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
- 批准号:
2323649 - 财政年份:2024
- 资助金额:
$ 103.62万 - 项目类别:
Standard Grant
CC* Regional Networking: Connecting Colorado's Western Slope Small Institutions of Higher Education to the Front Range GigaPoP Regional R&E Infrastructure
CC* 区域网络:将科罗拉多州西坡小型高等教育机构与前沿 GigaPoP 区域 R 连接起来
- 批准号:
2346635 - 财政年份:2024
- 资助金额:
$ 103.62万 - 项目类别:
Standard Grant