CAREER: Navigating the Curse of Dimensionality in Euclidean Optimization Problems

职业:解决欧几里得优化问题中的维数灾难

基本信息

  • 批准号:
    2337993
  • 负责人:
  • 金额:
    $ 64.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

This project aims to study the "curse of dimensionality," the phenomenon that many computational problems for geometric data become exponentially harder as the dimension increases. Advancements in deep learning have demonstrated that high-dimensional geometry and large-scale computation can model many aspects of the world. Even notions that at first glance appear to be non-geometric, such as the meaning of a word or the artistic style of a painting, can often be captured by the richness of a high-dimensional space. However, this richness is also the source of intractability in algorithms that are designed to answer questions and perform tasks, and nearly all applications of high-dimensional computing will face, sooner or later, the curse of dimensionality. This research seeks algorithms to overcome this curse, where the guiding question is: which geometric optimization problems admit efficient algorithms with accurate approximations? Given the massive increases in scale of modern data science applications, new algorithmic techniques are needed to drive further development. The project aims to develop the core algorithmic principles for problems that can be efficiently solved, and to identify the fundamental limitations of problems that do not admit efficient algorithms. The educational plan includes enhancements to course pedagogy through homework modules that guide students through difficult concepts through a process of "discovery." The project also includes mentoring of graduate students and postdoctoral fellows and broadening participation through the LatinX in AI (LXAI) organization. This project proceeds along three key algorithmic directions, each of which highlights a broader theme in geometric optimization that is not yet well-understood. These are (1) handling global constraints (for example, in computing optimal transports); (2) optimizing for the object versus the cost (as in certain hierarchical clustering problems); and (3) circumventing hardness results (as in the closest pair problem). Each challenge comes with its suite of foundational questions, conjectures, and algorithmic principles that this project will address. The guiding principles behind the research plan are dimension reduction and locality (taken together, these principles use dimension reduction to enhance nearest neighbor search). Driven by the theoretical advancements, the project will also develop practical implementations and benchmark tools for large-scale geometric optimization, as a way to invite innovation beyond theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在研究“维数灾难”,即许多几何数据的计算问题随着维数的增加而变得指数级困难的现象。深度学习的进步表明,高维几何和大规模计算可以模拟世界的许多方面。 即使是乍一看似乎非几何的概念,例如单词的含义或绘画的艺术风格,通常也可以通过高维空间的丰富性来捕捉。然而,这种丰富性也是旨在回答问题和执行任务的算法难以处理的根源,几乎所有高维计算的应用迟早都会面临维度的诅咒。本研究寻求克服这一诅咒的算法,其中的指导性问题是:哪些几何优化问题允许具有精确近似的高效算法?鉴于现代数据科学应用规模的大幅增长,需要新的算法技术来推动进一步发展。该项目旨在开发可以有效解决的问题的核心算法原理,并确定无法接受有效算法的问题的基本局限性。 该教育计划包括通过家庭作业模块增强课程教学法,引导学生通过“发现”过程理解困难的概念。 该项目还包括指导研究生和博士后研究员,并通过 LatinX in AI (LXAI) 组织扩大参与范围。该项目沿着三个关键算法方向进行,每个方向都突出了几何优化中尚未充分理解的更广泛主题。 这些是(1)处理全局约束(例如,在计算最佳传输时); (2) 针对对象与成本进行优化(如在某些层次聚类问题中); (3) 规避硬度结果(如最接近配对问题)。 每个挑战都伴随着该项目将解决的一系列基本问题、猜想和算法原理。 研究计划背后的指导原则是降维和局部性(总的来说,这些原则使用降维来增强最近邻搜索)。 在理论进步的推动下,该项目还将开发大规模几何优化的实际实施和基准工具,以此吸引理论之外的创新。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Waingarten其他文献

Boolean Unateness Testing with Õ(n^{3/4}) Adaptive Queries
使用 Õ(n^{3/4}) 自适应查询进行布尔不一致性测试
Playing Dominoes Is Hard, Except by Yourself
玩多米诺骨牌很难,除非你自己
  • DOI:
    10.1007/978-3-319-07890-8_12
  • 发表时间:
    2014-07-01
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    E. Demaine;Fermi Ma;Erik Waingarten
  • 通讯作者:
    Erik Waingarten
On Mean Estimation for General Norms with Statistical Queries
基于统计查询的一般范数均值估计
Beyond Talagrand functions: new lower bounds for testing monotonicity and unateness
超越 Talagrand 函数:测试单调性和唯一性的新下界
Optimal Hashing-based Time-Space Trade-offs for Approximate Near Neighbors
近似近邻的基于哈希的最优时空权衡
  • DOI:
    10.1137/1.9781611974782.4
  • 发表时间:
    2016-08-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ale;r Andoni;r;Thijs Laarhoven;Ilya P. Razenshteyn;Erik Waingarten
  • 通讯作者:
    Erik Waingarten

Erik Waingarten的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Waingarten', 18)}}的其他基金

PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    2002201
  • 财政年份:
    2020
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Fellowship Award

相似国自然基金

小脑在空间导航中的功能及神经环路研究
  • 批准号:
    32371074
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
患者导航干预视角下肿瘤诊疗延迟效应及影响机制研究
  • 批准号:
    72304060
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
近岸条件下北斗导航反射信号海面风速反演能力增强机制研究
  • 批准号:
    42306200
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
非理想条件下无人集群高精度协同定位与导航算法研究
  • 批准号:
    62373291
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向脊柱手术影像导航的多维动态配准与融合关键技术研究
  • 批准号:
    62331008
  • 批准年份:
    2023
  • 资助金额:
    243 万元
  • 项目类别:
    重点项目

相似海外基金

Navigating Chemical Space with Natural Language Processing and Deep Learning
利用自然语言处理和深度学习驾驭化学空间
  • 批准号:
    EP/Y004167/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Research Grant
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
  • 批准号:
    2902365
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Studentship
Resource Struggles and International Law: Navigating Global Transformations
资源斗争和国际法:引领全球变革
  • 批准号:
    DE240100131
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Discovery Early Career Researcher Award
Virtual Reality Maritime Safety Training: Navigating Emergency Scenarios in Confined Spaces (VR Emergency @Sea)
虚拟现实海事安全培训:密闭空间紧急情况导航(VR Emergency @Sea)
  • 批准号:
    10108437
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Launchpad
Alabama Agricultural and Mechanical University ALSAMP Bridge to the Doctorate: Navigating BD Scholars’ Successful Transition to STEM Graduate Programs
阿拉巴马农业机械大学 ALSAMP 通往博士学位的桥梁:引导 BD 学者成功过渡到 STEM 研究生项目
  • 批准号:
    2404955
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了