Enhancement of interfacial thermal transport through evanescent electric field mediated acoustic phonon transmission for efficient cooling of high power Gallium Nitride devices

通过瞬逝电场介导的声声子传输增强界面热传输,以实现高功率氮化镓器件的高效冷却

基本信息

  • 批准号:
    2336038
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-15 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Increasing power dissipation in electronic devices such as laptops, mobile phones and high-power Gallium Nitride (GaN) devices has led to the need for improved cooling, and to maintain device temperatures below permissible levels. A recent cooling strategy involves using a diamond substrate to cool electronic devices, due to the ultra-high thermal conductivity of diamond exceeding 2000 W/mK at 300 K. However, the interface between the diamond and the GaN electronic component has both poor interfacial bonding and structure-defects, which greatly diminish heat transfer across the interface, exacerbating the thermal management problem. The goal of this research is to explore the role of electric fields across the interface to reduce the interface thermal resistance and thus enable large enhancement of heat transfer across the electronic device-diamond substrate interface. The project will engage graduate and undergraduate students directly in the proposed research. High school and underrepresented students will be introduced to research activities through a summer-camp program and through outreach to tribal colleges in Oklahoma. It is well known that at nanometer gaps between polar dielectrics, evanescent electric fields lead to several orders of magnitude enhancement in heat transfer above the black body limit. Such enhancement in heat transfer is adequately described by continuum fluctuation-dissipation theorem, based on phonon polaritons (coupling of electric fields with optical phonons). At gaps of around 2 to 4 Angstroms, similar to those encountered across interfacial defects, a recent work demonstrated (through an atomistic formalism) that electric fields can also enable transmission of acoustic phonons, enhancing heat transfer. The project will explore such Coulomb interaction assisted acoustic phonon transmission, for enhancement of interfacial thermal conductance, using a combination of atomistic Green’s function method and classical and ab initio molecular dynamics. Simultaneously, the project will further explore materials with superior thermal conductivity relative to diamond, at nanometer to micron range length scales, through a first-principles approach based on three and four phonon scattering and an exact solution of the Boltzmann transport equation. Materials with superior thermal conductivity and improved interfacial thermal conductance will lead to next generation high power GaN devices with improved reliability and performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
笔记本电脑、移动电话和高功率氮化镓 (GaN) 设备等电子设备的功耗不断增加,因此需要改进冷却,并将设备温度保持在允许的水平以下。最近的冷却策略包括使用金刚石基板来冷却。由于金刚石在 300 K 时具有超过 2000 W/mK 的超高导热率,因此可以实现很酷的电子器件。然而,金刚石与 GaN 电子元件之间的界面结合不良,并且结构缺陷,大大减少了界面上的传热,加剧了热管理问题。本研究的目的是探索界面上电场的作用,以降低界面热阻,从而大幅增强界面上的传热。该项目将让研究生和本科生直接参与拟议的研究,并通过夏令营计划和俄克拉荷马州的部落大学向代表性不足的学生介绍研究活动。众所周知,极性之间的纳米间隙电介质中,瞬逝电场导致传热增强几个数量级,超过黑体极限,这种传热增强可以通过基于声子极化激元(电场与光学声子的耦合)的连续涨落耗散定理充分描述。在大约 2 到 4 埃的间隙中,类似于界面缺陷中遇到的间隙,最近的一项工作(通过原子形式主义)证明电场也可以实现声波的传输该项目将结合原子格林函数方法和经典及从头算分子动力学,探索这种库仑相互作用辅助声学声子传输,以增强界面热导。通过基于三和四声子散射的第一原理方法以及玻尔兹曼输运的精确解,在纳米到微米范围的长度尺度上相对于金刚石具有优异的导热性具有优异导热性和改进界面导热性的材料将带来可靠性和性能更高的下一代高功率 GaN 器件。该奖项是 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持。标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jivtesh Garg其他文献

Strain tuned high thermal conductivity in boron phosphide at nanometer length scales – a first-principles study
Length dependence thermal conductivity of zinc selenide (ZnSe) and zinc telluride (ZnTe) – a combined first principles and frequency domain thermoreflectance (FDTR) study
  • DOI:
    10.1039/d2cp03612f
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Rajmohan Muthaiah;Roshan Sameer Annam;Fatema Tarannum;Ashish Kumar Gupta;Jivtesh Garg;Shamsul Arafin
  • 通讯作者:
    Shamsul Arafin
The superior effect of edge functionalization relative to basal plane functionalization of graphene in enhancing the thermal conductivity of polymer–graphene nanocomposites – a combined molecular dynamics and Green's functions study
  • DOI:
    10.1039/d2cp00146b
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Rajmohan Muthaiah;Fatema Tarannum;Swapneel Danayat;Roshan Sameer Annam;Avinash Singh Nayal;N. Yedukondalu;Jivtesh Garg
  • 通讯作者:
    Jivtesh Garg
Crystal growth, structural and electronic characterizations of zero-dimensional metal halide (TEP)InBr4single crystals for X-ray detection
  • DOI:
    10.1039/d3tc02787b
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Zheng Zhang;Tony M. Pugliano;Da Cao;Doup Kim;Roshan S. Annam;Dilruba A. Popy;Tamanna Pinky;Ge Yang;Jivtesh Garg;Mario F. Borunda;Bayram Saparov
  • 通讯作者:
    Bayram Saparov
Thermal conductivity of hexagonal BC2P – a first-principles study
  • DOI:
    10.1039/d0ra08444a
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Rajmohan Muthaiah;Fatema Tarannum;Roshan Sameer Annam;Avinash Singh Nayal;Swapneel Danayat;Jivtesh Garg
  • 通讯作者:
    Jivtesh Garg

Jivtesh Garg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jivtesh Garg', 18)}}的其他基金

I-Corps: High thermal conductivity polymers and phase change materials based on graphene
I-Corps:基于石墨烯的高导热聚合物和相变材料
  • 批准号:
    2330247
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Investigation of phonon scattering in superlattices for design of efficient multiple quantum-well hot carrier solar cells
研究超晶格中的声子散射,以设计高效的多量子阱热载流子太阳能电池
  • 批准号:
    2115067
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: Investigation of strain and superior functionalization schemes for large enhancement of thermal conductivity in polymer-graphene nanocomposites and binary semiconductors
职业:研究应变和卓越的功能化方案,以大幅提高聚合物-石墨烯纳米复合材料和二元半导体的导热性
  • 批准号:
    1847129
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

低品位热高效利用中气液界面热质耦合传递强化的前沿新方法
  • 批准号:
    52111530131
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
玉米醇溶蛋白非热纤维化修饰及其强化气-水界面体系稳定性的机制研究
  • 批准号:
    32101875
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热强化多相抽提过程中非水相液体在土壤-水-气界面迁移和去除机制的研究
  • 批准号:
    22176158
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
Au/C@hol-ZrO2中空多级核壳结构强化热质传递过程提升太阳能界面蒸发性能的作用机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
碳基多级孔相变材料的多层次匹配组装与热特性强化
  • 批准号:
    51876007
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of High Mobility and High Reliability SiC MOSFETs by Fluorine-Enhanced Thermal Oxidation
通过氟增强热氧化开发高迁移率和高可靠性 SiC MOSFET
  • 批准号:
    23K03974
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: ISS: Revealing interfacial stability, thermal transport and transient effects in film evaporation in microgravity
合作研究:ISS:揭示微重力下薄膜蒸发的界面稳定性、热传输和瞬态效应
  • 批准号:
    2224417
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: Revealing interfacial stability, thermal transport and transient effects in film evaporation in microgravity
合作研究:ISS:揭示微重力下薄膜蒸发的界面稳定性、热传输和瞬态效应
  • 批准号:
    2224418
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Energy band design based on controlling ordered/disordered structure of non-thermal equilibrium group-IV alloy thin films
基于控制非热平衡IV族合金薄膜有序/无序结构的能带设计
  • 批准号:
    21H01809
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Functional control of plasmons and phnons at nanoparticle interfaces on oxide semiconductor for thermal management
用于热管理的氧化物半导体纳米颗粒界面处的等离子体激元和声子的功能控制
  • 批准号:
    21H01360
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了