I-Corps: Catalytic Artificial Self-Assemblies for the Biocatalytic Production of Small Molecules

I-Corps:用于小分子生物催化生产的催化人工自组装体

基本信息

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of a class of synthetic cells that can replace conventional biocatalytic processes for chemical production. Currently, biocatalysis of small molecules is implemented by two main methods: whole-cell catalysis and cell-free catalysis, both of which have their advantages and challenges. Whole-cell catalysis is limited in production metrics by the accumulation of toxins. In contrast, cell-free systems can support higher production metrics but suffer from enzyme degradation, which makes the manufacturing of complex chemicals difficult and economically unfeasible. The proposed technology provides an intermediate route to alleviate these challenges, and may be used to produce small molecules currently manufactured from conventional biocatalytic means, such as food additives and fragrances, drug precursors, and biofuels. For example, the proposed technology may be used to produce isobutanol from lignocellulose, which is considered the next generation of biofuels. Lignocellulose is the largest naturally available feedstock and is not derived from food sources, eliminating concerns about biofuel competition with food production. Compared with conventional ethanol biofuels, isobutanol may be blended with gasoline at higher concentrations and used directly in the existing petroleum infrastructure. The proposed technology is expected to achieve a 95% isobutanol yield from saccharified lignocellulose concentrations due to its improved tolerance compared to microbes, and lower greenhouse gas emissions by 70%, which cannot be achieved by conventional methods.This I-Corps project is based on the development of colloidal materials, called catalytic artificial self-assemblies (CASA), which are synthetic cells for the biocatalytic production of small molecules. The proposed technology uses complex coacervate protocells prepared and stabilized using low-cost, commercially available polymers. Simplified complex coacervate protocells have been shown to preserve enzymes in their near-native environments while still providing the flexibility of cell-free systems. Protocells of complex coacervate microdroplet emulsions improve enzymatic reaction rates by up to 25-fold and provide long-term stability (~4 months) to enzymes as well as processing flexibility not accessible in cells. In addition to showing improved reaction metrics, CASA is robust to environmental perturbations and overcomes key challenges concerning cell toxicity in whole cell systems, and enzyme stability in cell-free systems. This may allow a more flexible and economical bioreactor design and scaling up of these processes where the proposed platform may be used as a standalone method or integrated into existing industrial pipelines to reduce the cost of chemical production.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目更广泛的影响/商业潜力是开发一类合成细胞,可以取代传统的化学生产生物催化过程。 目前,小分子生物催化主要通过两种方法实现:全细胞催化和无细胞催化,两者各有优势和挑战。全细胞催化由于毒素的积累而在生产指标上受到限制。相比之下,无细胞系统可以支持更高的生产指标,但会遭受酶降解,这使得复杂化学品的制造变得困难且在经济上不可行。所提出的技术提供了缓解这些挑战的中间途径,并且可用于生产目前通过传统生物催化手段制造的小分子,例如食品添加剂和香料、药物前体和生物燃料。 例如,所提出的技术可用于从木质纤维素生产异丁醇,这被认为是下一代生物燃料。木质纤维素是最大的天然原料,并非来自食物来源,消除了人们对生物燃料与粮食生产竞争的担忧。与传统的乙醇生物燃料相比,异丁醇可以以更高的浓度与汽油混合,并直接用于现有的石油基础设施。由于与微生物相比,所提出的技术具有更高的耐受性,预计可从糖化木质纤维素浓度中实现 95% 的异丁醇收率,并将温室气体排放量降低 70%,这是传统方法无法实现的。该 I-Corps 项目基于胶体材料的开发,称为催化人工自组装体(CASA),它们是用于生物催化生产小分子的合成细胞。 所提出的技术使用复杂的凝聚层原始细胞,该细胞是使用低成本的市售聚合物制备和稳定的。简化的复杂凝聚层原始细胞已被证明可以在接近天然的环境中保存酶,同时仍然提供无细胞系统的灵活性。复杂凝聚层微滴乳液的原型细胞可将酶促反应速率提高高达 25 倍,并为酶提供长期稳定性(约 4 个月)以及细胞中无法实现的加工灵活性。 除了显示改进的反应指标外,CASA 对环境扰动具有鲁棒性,并克服了有关全细胞系统中的细胞毒性和无细胞系统中酶稳定性的关键挑战。 这可以实现更灵活、更经济的生物反应器设计并扩大这些工艺的规模,其中所提出的平台可以用作独立方法或集成到现有工业管道中,以降低化学品生产成本。该奖项反映了 NSF 的法定使命,并已通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samanvaya Srivastava其他文献

Structure, Morphology, and Rheology of Polyelectrolyte Complex Hydrogels Formed by Self-Assembly of Oppositely Charged Triblock Polyelectrolytes
带相反电荷的三嵌段聚电解质自组装形成的聚电解质复合水凝胶的结构、形态和流变学
  • DOI:
    10.1021/acs.macromol.0c00847
  • 发表时间:
    2020-07-07
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Samanvaya Srivastava;A. E. Levi;D. Goldfeld;M. Tirrell
  • 通讯作者:
    M. Tirrell
Protein–Polyelectrolyte Complexes and Micellar Assemblies
蛋白质-聚电解质复合物和胶束组件
  • DOI:
    10.3390/polym11071097
  • 发表时间:
    2019-06-28
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Shang Gao;A. Holkar;Samanvaya Srivastava
  • 通讯作者:
    Samanvaya Srivastava
Hyperdiffusive Dynamics in Newtonian Nanoparticle Fluids.
牛顿纳米粒子流体中的超扩散动力学。
  • DOI:
    10.1021/acsmacrolett.5b00319
  • 发表时间:
    2015-09-24
  • 期刊:
  • 影响因子:
    7.015
  • 作者:
    Samanvaya Srivastava;Praveen Agarwal;R. Mangal;D. Koch;S. Narayanan;L. Archer
  • 通讯作者:
    L. Archer
Structure and rheology of nanoparticle–polymer suspensions
纳米粒子-聚合物悬浮液的结构和流变学
  • DOI:
    10.1039/c2sm06889c
  • 发表时间:
    2012-03-21
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Samanvaya Srivastava;J. Shin;L. Archer
  • 通讯作者:
    L. Archer
Synthesis and Assembly of Designer Styrenic Diblock Polyelectrolytes.
设计型苯乙烯二嵌段聚电解质的合成和组装。
  • DOI:
    10.1021/acsmacrolett.8b00346
  • 发表时间:
    2018-06-06
  • 期刊:
  • 影响因子:
    7.015
  • 作者:
    Jeffrey M. Ting;Hao;Abraham Herzog;Samanvaya Srivastava;M. Tirrell
  • 通讯作者:
    M. Tirrell

Samanvaya Srivastava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samanvaya Srivastava', 18)}}的其他基金

CAREER: Hierarchical Structures and Tunable Mechanics of Polyelectrolyte Complex-Interpenetrating Network (PEC-IPN) Hydrogels
职业:聚电解质复合互穿网络(PEC-IPN)水凝胶的层次结构和可调力学
  • 批准号:
    2048285
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向气相光电催化CO2还原膜反应器构筑的质子传导二维层状膜研究
  • 批准号:
    22378266
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于聚庚嗪酰亚胺双金属配位调控构建高效(压电)光催化全分解水体系
  • 批准号:
    52372179
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
cMOFs/Pd-LDHs异质结的导向制备及其电催化硝酸盐合成氨研究
  • 批准号:
    22368002
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于金属-二维分子筛的木质素自供氢催化解聚脱氧制备单环芳烃机理研究
  • 批准号:
    52306231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有机酸衍生物作为双官能化试剂用于可见光催化不饱和键的羧基化反应
  • 批准号:
    22301036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Construction of Artificial Nucleic Acids with Highly Active Catalytic Target RNA Cleavage Ability and Development as a Therapeutic Platform
具有高活性催化靶RNA切割能力的人工核酸的构建及其作为治疗平台的开发
  • 批准号:
    23H05465
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Ribo-STAMPEDE: novel tools for molecular profiling of brain cell types
Ribo-STAMPEDE:脑细胞类型分子分析的新工具
  • 批准号:
    10506300
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Fluidized Catalytic Cracking (FCC) and Chemical Looping Combustion (CLC): Kinetics , First Principle Models (FPM), Data Driven Models (DDM) and Artificial Intelligence (AI)
流化催化裂化 (FCC) 和化学循环燃烧 (CLC):动力学、第一原理模型 (FPM)、数据驱动模型 (DDM) 和人工智能 (AI)
  • 批准号:
    555745-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Alliance Grants
Fluidized Catalytic Cracking (FCC) and Chemical Looping Combustion (CLC): Kinetics , First Principle Models (FPM), Data Driven Models (DDM) and Artificial Intelligence (AI)
流化催化裂化 (FCC) 和化学循环燃烧 (CLC):动力学、第一原理模型 (FPM)、数据驱动模型 (DDM) 和人工智能 (AI)
  • 批准号:
    555745-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Alliance Grants
Fluidized Catalytic Cracking (FCC) and Chemical Looping Combustion (CLC): Kinetics , First Principle Models (FPM), Data Driven Models (DDM) and Artificial Intelligence (AI)
流化催化裂化 (FCC) 和化学循环燃烧 (CLC):动力学、第一原理模型 (FPM)、数据驱动模型 (DDM) 和人工智能 (AI)
  • 批准号:
    555745-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了