Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation

协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就

基本信息

项目摘要

This project aims to serve the national interest by responding to the call to address the grand challenge of advancing personalized learning (National Academy of Engineering). This research and development (R&D) project will embark on a comprehensive conceptual replication and adaption effort to examine the degree to which prior knowledge, in the form of pre-class adaptive learning platform (APL) lessons/learning modules, is associated with student affective and cognitive outcomes in blended active learning classrooms. In a blended active learning classroom, students are expected to prepare before class, for example, by reviewing prior knowledge using videos and online assessments. Five engineering core courses taught at the sophomore and junior levels will serve as classroom settings for testing adaptive learning. This testing will be done by comparing "one-size-fits-all" pre-class activities delivered via the Learning Management System (LMS) with adaptive and flexible pre-class lessons delivered via an adaptive learning platform (ALP). Courses include Statistical Testing and Regression, Linear Circuits and Systems, Fluid Systems, Engineering Fluid Mechanics, and Computational Methods. A set of published assessments, including concept inventories, will be administered to compare students' cognitive and affective outcomes in the LMS and ALP environments. This R&D project will be used to (1) develop, improve, and deploy ALP lessons as well as the comparative LMS content in addition to in-class and post-class exercises for five courses at three institutions; (2) compare cognitive outcomes (i.e., conceptual, procedural, and higher-order problem-solving) and affective outcomes (cognitive engagement and academic motivation) with adaptive learning (experimental) vs. without adaptive learning (control) for blended classroom preparation; (3) analyze ALP analytics/metrics to study student learning behaviors (such as time spent on pre-class preparation, number of quiz attempts, and early completion counts) and their relationship to the outcomes; and (4) communicate findings and best practices via open educational materials, journal/conference articles, social media, websites, and faculty workshops. The development and research effort will be conducted through a collaboration of engineering and engineering education faculty and researchers at three institutions: the University of South Florida, the University of Central Florida, and the University of Pittsburgh. The investigation will focus on the role and association of prior knowledge (as fostered by student participation in pre-class activities and differential levels of student preparedness) with students' cognitive and affective outcomes, such as achievement, cognitive engagement, and academic motivation. The quantitative and qualitative mixed methods study will be framed by student background factors and student demographics (e.g., GPA, gender, ethnicity, age, Pell Grant status, transfer status), existing, published, and tested assessment instruments, and theories of and approaches to adaptive learning with AI-enhanced technology (RealizeIT). Parametric and non-parametric statistical approaches/methods and deductive and inductive approaches/framing will guide the data collection, analysis, and interpretation. The NSF IUSE: EDU Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports creating, exploring, and implementing promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在响应国家工程院的号召,应对推进个性化学习的巨大挑战,从而服务于国家利益。 该研发 (R&D) 项目将开展全面的概念复制和适应工作,以检查课前适应性学习平台 (APL) 课程/学习模块形式的先验知识与学生情感的关联程度和混合主动学习课堂中的认知结果。 在混合主动学习课堂中,学生应该在课前做好准备,例如,通过使用视频和在线评估复习先前的知识。 大二和大三教授的五门工程核心课程将作为测试适应性学习的课堂环境。 该测试将通过将通过学习管理系统 (LMS) 提供的“一刀切”课前活动与通过自适应学习平台 (ALP) 提供的自适应灵活的课前课程进行比较来完成。 课程包括统计测试和回归、线性电路和系统、流体系统、工程流体力学和计算方法。 将进行一系列已发布的评估,包括概念清单,以比较学生在 LMS 和 ALP 环境中的认知和情感结果。该研发项目将用于 (1) 开发、改进和部署 ALP 课程以及比较 LMS 内容,以及三个机构的五门课程的课内和课后练习; (2) 比较混合课堂准备中使用适应性学习(实验)与不使用适应性学习(控制)的认知结果(即概念、程序和高阶问题解决)和情感结果(认知参与和学术动机); (3) 分析 ALP 分析/指标,以研究学生的学习行为(例如课前准备时间、测验尝试次数和提前完成计数)及其与结果的关系; (4) 通过开放教育材料、期刊/会议文章、社交媒体、网站和教师研讨会交流研究结果和最佳实践。 开发和研究工作将通过三个机构的工程和工程教育教师和研究人员的合作进行:南佛罗里达大学、中佛罗里达大学和匹兹堡大学。 调查将重点关注先验知识(通过学生参加课前活动和不同程度的学生准备程度而培养)与学生的认知和情感结果(例如成绩、认知参与度和学术动机)的作用和关联。 定量和定性混合方法研究将由学生背景因素和学生人口统计数据(例如,GPA、性别、种族、年龄、佩尔助学金身份、转学身份)、现有、已发布和测试的评估工具以及理论和方法构成利用人工智能增强技术 (RealizeIT) 实现自适应学习。 参数和非参数统计方法/方法以及演绎和归纳方法/框架将指导数据收集、分析和解释。 NSF IUSE:EDU 计划支持研究和开发项目,以提高所有学生 STEM 教育的有效性。通过参与学生学习轨道,该计划支持创建、探索和实施有前途的实践和工具。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kelly Kibler其他文献

Kelly Kibler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kelly Kibler', 18)}}的其他基金

CAREER: The influence of turbulence to mass transport in complex aquatic habitats
职业:湍流对复杂水生栖息地中质量运输的影响
  • 批准号:
    1944880
  • 财政年份:
    2020
  • 资助金额:
    $ 11.17万
  • 项目类别:
    Continuing Grant

相似国自然基金

使用Primer ID深度测序检测HIV-1新发感染研究
  • 批准号:
    82373642
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
煤矸石混凝土受弯构件使用性能与设计方法研究
  • 批准号:
    52378191
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
开放空间内部特征对公共生活行为的复合影响效应与使用者感知机理研究
  • 批准号:
    52308052
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高能重离子碰撞中使用机器学习研究强子标记的喷注层析
  • 批准号:
    12305140
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于使用异质性的退化产品可靠性评估与决策优化研究
  • 批准号:
    72371182
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319096
  • 财政年份:
    2024
  • 资助金额:
    $ 11.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319098
  • 财政年份:
    2024
  • 资助金额:
    $ 11.17万
  • 项目类别:
    Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342748
  • 财政年份:
    2024
  • 资助金额:
    $ 11.17万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347912
  • 财政年份:
    2024
  • 资助金额:
    $ 11.17万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347913
  • 财政年份:
    2024
  • 资助金额:
    $ 11.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了