NSF Workshop: Towards an Open Source Model for Data and Metadata Standards

NSF 研讨会:迈向数据和元数据标准的开源模型

基本信息

  • 批准号:
    2334483
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Recent progress in machine learning and artificial intelligence promises to advance research and understanding across a wide range of fields and activities. In tandem, an increased awareness of the importance of open data for reproducibility and scientific transparency is making inroads in fields that have not traditionally produced large publicly available datasets. Data sharing requirements from publishers and funders, as well as from other stakeholders, have also created pressure to make datasets with research and/or public interest value available through digital repositories. However, to make the best use of existing data, and facilitate the creation of useful future datasets, robust, interoperable and usable standards need to evolve and adapt over time. The open-source development model offers significant potential benefits to the process of standard creation and adaptation. In particular, development and adaptation of standards can take advantage of long-standing socio-technical processes that have been key to managing the development of open-source software, and allow incorporating broad community input into the formulation of these standards. This workshop aims to create interdisciplinary connections across a wide range of research fields, thereby providing fertile ground for exchange of knowledge and the creation of new and broadly useful knowledge about the application of the open-source model to data and metadata standards. Furthermore, the synthesis that will be generated will be useful for policy makers and funders in determining worthwhile avenues for policy and funding investment to best make use of the open-source production and governance principles in support of broad societal goals.By adhering to open-source standards for formal descriptions (e.g., by implementing schemata for standard specification, and/or by implementing automated standard validation), processes such as automated testing and continuous integration, which have been important in the development of open-source software, can be adopted in defining data and metadata standards as well. Similarly, open-source governance provides a range of stakeholders a voice in the development of standards, potentially enabling use-cases and concerns that would not be taken into account in a top-down model of standards development. On the other hand, open-source models also carry unique risks that need to be taken into account. The goal of this workshop is to discuss examples where an open-source model for standards development has had significant impact on the practice within a field. Importantly, the workshop will also discuss cases where this model has not worked in the past, and cases where this model is not a good fit.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习和人工智能的最新进展有望推动广泛领域和活动的研究和理解。与此同时,人们越来越认识到开放数据对于可重复性和科学透明度的重要性,正在向传统上不产生大型公开数据集的领域取得进展。来自出版商和资助者以及其他利益相关者的数据共享要求也产生了压力,要求通过数字存储库提供具有研究和/或公共利益价值的数据集。然而,为了充分利用现有数据并促进创建有用的未来数据集,稳健、可互操作和可用的标准需要随着时间的推移而发展和适应。开源开发模型为标准创建和适应过程提供了巨大的潜在好处。特别是,标准的开发和调整可以利用长期存在的社会技术流程,这些流程对于管理开源软件的开发至关重要,并允许将广泛的社区意见纳入这些标准的制定中。本次研讨会旨在建立跨广泛研究领域的跨学科联系,从而为知识交流和创建关于开源模型在数据和元数据标准中的应用的新的和广泛有用的知识提供肥沃的基础。此外,将生成的综合报告将有助于政策制定者和资助者确定有价值的政策和资金投资途径,以最好地利用开源生产和治理原则来支持广泛的社会目标。可以采用正式描述的源标准(例如,通过实施标准规范的模式,和/或通过实施自动化标准验证),可以采用自动化测试和持续集成等流程,这些流程在开源软件的开发中非常重要在定义中数据和元数据标准。同样,开源治理为一系列利益相关者提供了标准开发中的发言权,可能会实现自上而下的标准开发模型中不会考虑的用例和关注点。另一方面,开源模型也存在需要考虑的独特风险。本次研讨会的目标是讨论标准开发的开源模型对某个领域的实践产生重大影响的示例。重要的是,研讨会还将讨论该模型过去不起作用的案例,以及该模型不适合的案例。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和能力进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ariel Rokem其他文献

Reply.
回复。
  • DOI:
    10.1016/j.oret.2017.11.006
  • 发表时间:
    2016-12-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cecilia S. Lee;Ariel Rokem;Aaron Y. Lee
  • 通讯作者:
    Aaron Y. Lee
napari/napari: 0.4.12rc1
纳帕里/纳帕里:0.4.12rc1
  • DOI:
    10.5281/zenodo.4633896
  • 发表时间:
    2021-03-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicholas Sofroniew;Talley J. Lambert;K. Evans;Juan Nunez;Philip Winston;Grzegorz Bokota;Kevin A. Yamauchi;Ahmet Can Solak;ziyangczi;Genevieve Buckley;Matthias Bussonnier;Gonzalo Peña;Draga Doncila Pop;Pam;Tony Tung;Volker Hilsenstein;alisterburt;Hector;Jeremy Freeman;Peter Boone;Alan R Lowe;Christoph Gohlke;Loic Royer;kir ul;Hagai Har;Mark Kittisopikul;Shannon Axelrod;Abhishek Patil;Abigail McGovern;Ariel Rokem
  • 通讯作者:
    Ariel Rokem
Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. 0.12.0-rc1
Nipype:Python 中灵活、轻量级且可扩展的神经影像数据处理框架。
  • DOI:
    10.5281/zenodo.50186
  • 发表时间:
    2016-04-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Krzysztof J. Gorgolewski;Sami Kristian Andberg;Stephan Gerhard;Janosch Linkersdörfer;Jörg Stadler;Benjamin Acland;Julia M. Huntenburg;Joshua Warner;Cindee Madison;Alexandre Gramfort;B. Pinsard;L. N. Perkins;Erik Ziegler;William Broderick;Gavin Cooper;David Welch;René Küttner;Ivan Gonzalez;Siqi Liu;Daniel McNamee;A. Eshaghi;Y. Halchenko;Michael Hanke;Michael L. Waskom;Paul Sharp;L. Lampe;Sharad Sikka;J. Pellman;Oscar Esteban;Christopher J. Steele;A. Keshavan;D. P. Orfanos;A. Manhães;Carlo Hamalainen;Lijie Huang;Xiang;Blake E Dewey;C. Burns;Michael Dayan;Satrajit S. Ghosh;Dav Clark;Erik Kastman;Franziskus Liem;Alexander Schaefer;D. Wassermann;Jens Kleesiek;Hans Johnson;Martín Pérez;Daniel Geisler;Shariq Iqbal;R. Craddock;D. S. Margulies;T. Glatard;C. Markiewicz;Ariel Rokem;B. N. Nichols;David Gage Ellis;Dmytro Bielievtsov;Jessica Forbes;Michael P. Notter;Andrew Floren;W. Triplett;Danielle E. Clark;G. Varoquaux
  • 通讯作者:
    G. Varoquaux
Diffusion MRI Head Motion Correction Methods are Highly Accurate but Impacted by Denoising and Sampling Scheme
扩散 MRI 头部运动校正方法非常准确,但受到去噪和采样方案的影响
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Cieslak;Philip A. Cook;Tinashe M. Tapera;Hamsanandini Radhakrishnan;Mark Elliott;D. Roalf;D. Oathes;Dani S. Bassett;M. Tisdall;Ariel Rokem;Scott T. Grafton;T. Satterthwaite
  • 通讯作者:
    T. Satterthwaite
nipy/nipype: 1.4.2
尼皮/尼皮佩:1.4.2
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oscar Esteban;Christopher J. Markiewicz;Hans Johnson;Erik Ziegler;Alexandre Manhães;Dorota Jarecka;Christopher Burns;David Gage Ellis;Carlo Hamalainen;Michael Notter;Benjamin Yvernault;Taylor Salo;Michael Waskom;Mathias Goncalves;Kesshi Jordan;Jason Wong;Blake E Dewey;Cindee Madison;Erin Benderoff;Daniel Clark;Fred Loney;Dav Clark;Anisha Keshavan;Michael Joseph;Dylan M. Nielson;Michael Dayan;Marc Modat;Alexandre Gramfort;Salma Bougacha;Basile Pinsard;Shoshana L. Berleant;Horea Christian;Ariel Rokem;Matteo Visconti di Oleggio Castello;Yaroslav O. Halchenko;Jakub Kaczmarzyk;Gaël Varoquaux;Rastko Ćirić;Brendan Moloney;Elizabeth DuPre;Serge Koudoro;Michael G. Clark;Ben Cipollini;Demian Wassermann;Jérémy Guillon;Ross D. Markello;Michael Hanke;Colin Buchanan;Rosalia Tungaraza;Ashley Gillman;Wolfgang M. Pauli;Gilles de Hollander;Sharad Sikka;Jessica Forbes;David Mordom;Shariq Iqbal;Matteo Mancini;Ian B. Malone;Mathieu Dubois;Yannick Schwartz;Caroline Frohlich;Alejandro Tabas;David Welch;Adam Richie;Steven Tilley;Aimi Watanabe;B. N. Nichols;Julia M. Huntenburg;Arman Eshaghi;D. Ginsburg;Alexander Schaefer;Katherine L. Bottenhorn;Chad Cumba;Benjamin Acland;Anibal Sólon Heinsfeld;Erik Kastman;James D. Kent;Jens Kleesiek;Ali Ghayoor;Drew Erickson;Steven Giavasis;Alejandro de la Vega;Franz Liem;René Küttner;Martin Felipe Perez;John Aldo Lee;Jarrod Millman;Jeff Lai;Dale Zhou;Christian Haselgrove;Daniel Glen;Anna Doll;Mandy Renfro;Carlos Correa;Siqi Liu;Leonie Lampe;Xiang;Michael Hallquist;Sin Kim;Ari E. Kahn;Tristan Glatard;William Triplett;Kshitij Chawla;J. Salvatore;Fernando Pérez;Feilong Ma;Anne Park;R. C. Craddock;Oliver P. Hinds;Russell A. Poldrack;L. Perkins;Hrvoje Stojic;Andrey Chetverikov;Souheil Inati;Martin Grignard;Lukas Snoek;Lucinda M. Sisk;Katrin Leinweber;Junhao Wen;Sebastian Urchs;Ross Blair;K. Matsubara;Andrew Floren;Aaron Mattfeld;Stephan Gerhard;Jörg Stadler;Gavin Cooper;Daniel Haehn;William Broderick;Sami Kristian Andberg;Maxime Noel;Matthew Cieslak;Joke Durnez;Eric Condamine;Dimitri Papadopoulos Orfanos;Daniel Geisler;B. Meyers;Arielle Tambini;Alejandro Weinstein;Abel A. González Orozco;Robbert Harms;Ranjeet Khanuja;Paul Sharp;Olivia Stanley;Nat Lee;Michael R. Crusoe;Matthew Brett;Marcel Falkiewicz;Leon Weninger;Kornelius Podranski;Janosch Linkersdörfer;Guillaume Flandin;Garikoitz Lerma;Claire Tarbert;Brian Cheung;A. Van;Andrew Davison;Dmitry Shachnev;Miguel Molina;Simon Rothmei;Murat Bilgel;Kai Schlamp;Eduard Ort;Daniel McNamee;Jaime Arias;Dmytro Bielievtsov;Christopher J. Steele;Lijie Huang;Ivan Gonzalez;Joshua Warner;Daniel S. Margulies;Oliver Contier;Ana Marina;Victor Saase;Thomas Nickson;Jan Varada;Isaac Schwabacher;John Pellman;Nicolas Pannetier;Conor McDermottroe;Paul Glad Mihai;Krzysztof J. Gorgolewski;Satrajit S. Ghosh
  • 通讯作者:
    Satrajit S. Ghosh

Ariel Rokem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

资源受限柔性装配流水车间批量流调度与分批配送集成问题研究
  • 批准号:
    52375489
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
低碳环境下考虑阶段间运输混合流水车间成组调度的协同智能优化方法
  • 批准号:
    72301026
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
制造单元能力可重构的矩阵式数字孪生装配车间智能管控方法
  • 批准号:
    52375479
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
定制化生产下车间资源的数字孪生管控方法
  • 批准号:
    62303142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据-知识驱动的离散车间制造资源服务主动发现与协同优化配置方法
  • 批准号:
    52305554
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF Project Scoping Workshop: Towards Precise & Accurate Calculations of Neutrinoless Double-Beta Decay
NSF 项目范围界定研讨会:走向精确
  • 批准号:
    2226819
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
NSF Project Scoping Workshop: Accelerating Progress Towards Practical Quantum Advantage
NSF 项目范围界定研讨会:加速实现实用量子优势
  • 批准号:
    2230199
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
NSF Workshop: Machine Learning Hardware Breakthroughs Towards Green AI and Ubiquitous On-Device Intelligence. To be Held in November 2020.
NSF 研讨会:机器学习硬件突破绿色人工智能和无处不在的设备智能。
  • 批准号:
    2054865
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
The Future VR/AR Network -- Towards Virtual Human/Object Teleportation: NSF Workshop on Networked Virtual and Augmented Reality Communications
未来的 VR/AR 网络——迈向虚拟人/物隐形传态:NSF 网络虚拟和增强现实通信研讨会
  • 批准号:
    2040088
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
The Future VR/AR Network -- Towards Virtual Human/Object Teleportation: NSF Workshop on Networked Virtual and Augmented Reality Communications
未来的 VR/AR 网络——迈向虚拟人/物隐形传态:NSF 网络虚拟和增强现实通信研讨会
  • 批准号:
    1821875
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了