Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
基本信息
- 批准号:2334385
- 负责人:
- 金额:$ 10.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award is made on an EAGER proposal. It supports progress on a project advanced at the SSMCDAT 2023 Datathon held at Lehigh University. This project aims to understand the oxidation behavior of high-entropy alloy nanoparticles, which are a new type of alloys containing multiple elements in roughly equal proportions. Oxidation under industrial conditions negatively impacts the performance of these alloys, limiting their broader use. In this project, the team will employ a data-driven approach, combining experimental and computational datasets with targeted experimental synthesis. The goal is to develop reliable predictive models considering uncertainties in both types of data, to lead to a better understanding of the oxidation behavior of high-entropy alloy nanoparticles at the nanoscale. By gaining fundamental knowledge through this interdisciplinary effort spanning materials science, chemistry, and applied mathematics, the project has the potential to enhance the oxidation resistance of high-entropy alloy nanoparticles. It will also provide essential support for critical experimental studies to validate the data-driven models. This research opens new possibilities for innovative strategies to synthesize high-entropy materials, paving the way for exciting advances in future research and technological applications.The project provides comprehensive research training in materials chemistry and data science to graduate students within a collaborative and interdisciplinary research environment. The project will participate in a long program at the Institute of Mathematical and Statistical Innovation and organize a workshop centered around "Uncertainty Quantification for Chemistry and Materials Science". Leveraging the outcomes of the project, the team aims to propel and invigorate data-intensive research, particularly by integrating uncertainty quantification into predictive modeling within the domain of solid state and materials chemistry. TECHNICAL SUMMARYThis award is made on an EAGER proposal. It supports progress on a project advanced at the SSMCDAT 2023 Datathon held at Lehigh University. This project aims to gain a mechanistic understanding of the interplay among elemental segregation, migration, and oxidation resistance of high-entropy alloy nanoparticles by integrating experimental and computational tools with modern data science methods. The goal is to establish data-driven materials design strategies that allow precise control over the oxidation kinetics of high-entropy nanoparticles with composition design. The project will leverage existing experimental and computational datasets on thermodynamic and adsorption energetics, and combine this data with supplementary high-throughput first-principles calculations and hybrid molecular dynamics / Monte Carlo simulations, to develop machine learning models for elemental segregation and migration models in high-entropy alloy nanoparticles under oxidation conditions. A novel Gaussian Process regression model, which inherently includes uncertainty quantification and allows for intuitive interpretation, will be developed to predict oxidation behavior. Furthermore, the project will synthesize high-entropy alloy nanoparticles with specific compositions and characterize their structural and oxidation behavior, comparing the results with model predictions. This this research will provide experimentally validated fundamental knowledge regarding the structure-property relationships of high-entropy alloy nanoparticles under oxidation environments. Additionally, the project will establish a valuable suite of analytical and modeling tools for the field of solid-state and materials chemistry. These tools will enable an integrated approach to accelerate experimental-computational design of high-entropy alloy nanoparticles, facilitating theory-guided synthesis research of multicomponent material nanoparticles across a broader chemical space.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项是根据 EAGER 提案颁发的。它支持在理海大学举办的 SSMCDAT 2023 Datathon 上推进的项目的进展。该项目旨在了解高熵合金纳米颗粒的氧化行为,高熵合金纳米颗粒是一种含有大致相等比例的多种元素的新型合金。工业条件下的氧化会对这些合金的性能产生负面影响,限制其更广泛的使用。在这个项目中,该团队将采用数据驱动的方法,将实验和计算数据集与有针对性的实验合成相结合。目标是开发可靠的预测模型,考虑到两种类型数据的不确定性,以便更好地理解纳米级高熵合金纳米粒子的氧化行为。通过跨越材料科学、化学和应用数学的跨学科努力获得基础知识,该项目有可能增强高熵合金纳米粒子的抗氧化性。它还将为验证数据驱动模型的关键实验研究提供必要的支持。这项研究为合成高熵材料的创新策略开辟了新的可能性,为未来研究和技术应用中令人兴奋的进展铺平了道路。该项目在协作和跨学科研究环境中为研究生提供材料化学和数据科学方面的全面研究培训。该项目将参加数学与统计创新研究所的一个长期项目,并组织一个以“化学和材料科学的不确定性量化”为中心的研讨会。利用该项目的成果,该团队旨在推动和振兴数据密集型研究,特别是通过将不确定性量化整合到固态和材料化学领域的预测模型中。技术摘要该奖项是根据 EAGER 提案颁发的。它支持在理海大学举办的 SSMCDAT 2023 Datathon 上推进的项目的进展。该项目旨在通过将实验和计算工具与现代数据科学方法相结合,从机理上理解高熵合金纳米颗粒的元素偏析、迁移和抗氧化性之间的相互作用。目标是建立数据驱动的材料设计策略,通过成分设计精确控制高熵纳米颗粒的氧化动力学。该项目将利用现有的热力学和吸附能学实验和计算数据集,并将这些数据与补充的高通量第一原理计算和混合分子动力学/蒙特卡罗模拟相结合,开发高通量元素分离和迁移模型的机器学习模型。 -氧化条件下的熵合金纳米颗粒。将开发一种新颖的高斯过程回归模型来预测氧化行为,该模型本质上包括不确定性量化并允许直观解释。此外,该项目将合成具有特定成分的高熵合金纳米颗粒,并表征其结构和氧化行为,并将结果与模型预测进行比较。这项研究将提供有关氧化环境下高熵合金纳米粒子的结构-性能关系的经过实验验证的基础知识。此外,该项目将为固态和材料化学领域建立一套有价值的分析和建模工具。这些工具将采用集成方法来加速高熵合金纳米颗粒的实验计算设计,促进更广泛化学空间中多组分材料纳米颗粒的理论指导合成研究。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Chen其他文献
Pressure Change Of Fixed Rotational Deformities In The Femur In Human Cadaver Knees-A Biomechanical Study
人体尸体膝盖股骨固定旋转畸形的压力变化-生物力学研究
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Peizhi Yuwen;Hongzhi Lv;Yan;Wenli Chang;Ning Wei;Jialiang Guo;Haicheng Wang;Kai Ding;Yingze Zhang;Wei Chen - 通讯作者:
Wei Chen
Simultaneous influence of sympathetic autonomic stress on Schlemm’s canal, intraocular pressure and ocular circulation
交感自主神经应激对施莱姆管、眼压和眼循环的同时影响
- DOI:
10.1038/s41598-019-56562-0 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:4.6
- 作者:
Wei Chen;Zhiqi Chen;Y. Xiang;C. Deng;Hong Zhang;Junming Wang - 通讯作者:
Junming Wang
An unusual syncytia-inducing human immunodeficiency virus type 1 primary isolate from the central nervous system that is restricted to CXCR4, replicates efficiently in macrophages, and induces neuronal apoptosis
一种不寻常的合胞体诱导人类免疫缺陷病毒 1 型,从中枢神经系统中分离出来,仅限于 CXCR4,在巨噬细胞中有效复制,并诱导神经元凋亡
- DOI:
10.1080/13550280390218706 - 发表时间:
2003-08-01 - 期刊:
- 影响因子:3.2
- 作者:
Y. Yi;Wei Chen;I. Frank;J. Cutilli;Anjali Singh;L. Starr;J. Sulcove;D. Kolson;R. Collman - 通讯作者:
R. Collman
DISSCO: direct imputation of summary statistics allowing covariates
DISSCO:允许协变量的汇总统计数据的直接插补
- DOI:
10.1093/bioinformatics/btv168 - 发表时间:
2015-08-01 - 期刊:
- 影响因子:5.8
- 作者:
Zheng Xu;Q. Duan;Song Yan;Wei Chen;Mingyao Li;E. Lange;Yun Li - 通讯作者:
Yun Li
Omics approaches in asthma research: Challenges and opportunities
哮喘研究中的组学方法:挑战和机遇
- DOI:
10.1016/j.pccm.2024.02.002 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:0
- 作者:
Molin Yue;Shiyue Tao;Kristina Gaietto;Wei Chen - 通讯作者:
Wei Chen
Wei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Chen', 18)}}的其他基金
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
BRITE Fellow: AI-Enabled Discovery and Design of Programmable Material Systems
BRITE 研究员:人工智能支持的可编程材料系统的发现和设计
- 批准号:
2227641 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
2404816 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
BRITE Fellow: AI-Enabled Discovery and Design of Programmable Material Systems
BRITE 研究员:人工智能支持的可编程材料系统的发现和设计
- 批准号:
2227641 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys
合作研究:多主元合金表面氧化物形成的微观机制
- 批准号:
2219489 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
- 批准号:
2005661 - 财政年份:2020
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
1945380 - 财政年份:2020
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
1940114 - 财政年份:2019
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Data: HDR: Nanocomposites to Metamaterials: A Knowledge Graph Framework
合作研究:框架:数据:HDR:纳米复合材料到超材料:知识图框架
- 批准号:
1835782 - 财政年份:2018
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
RUI: Poly (vinyl alcohol) Thin Film Dewetting by Controlled Directional Drying
RUI:通过受控定向干燥进行聚(乙烯醇)薄膜去湿
- 批准号:
1807186 - 财政年份:2018
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant