Conference: Integrating Large Language Models into Solid State Materials Curriculum: Enhancing Laboratory Skills through AI

会议:将大型语言模型融入固态材料课程:通过人工智能增强实验室技能

基本信息

  • 批准号:
    2333654
  • 负责人:
  • 金额:
    $ 3.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Non-Technical SummaryWhen used effectively, artificial intelligence (AI) platforms have the potential to facilitate personalized, self-paced learning and real-time feedback, making education more equitable and catering to diverse learning styles and needs. This 2-day workshop, supported by the Solid State and Materials Chemistry program in NSF’s Division of Materials Research, encourages participants to develop innovative approaches and best practices to incorporating widely-available large language models – such as ChatGPT and Bard – into solid state materials chemistry education at both undergraduate and graduate levels. This workshop at Colorado School of Mines fosters interactions and collaborations among a diverse group of scientists and educators, including graduate students, postdoctoral researchers, and faculty. Participants work collaboratively to (1) develop innovative approaches to using AI-powered tools in the classroom, and (2) identify potential limitations and discuss ethical considerations for the use of these tools in an educational setting. NSF funding supports travel and accommodations for workshop participants to ensure a diverse cohort of attendees.Technical SummaryThe growing accessibility of artificial intelligence (AI)-powered tools, such as ChatGPT and Bard, to both students and educators requires evolution of educational practices. This workshop, supported by the Solid State and Materials Chemistry program in NSF’s Division of Materials Research, brings together faculty, postdoctoral researchers and students to discuss possibilities to incorporate AI-powered Large Language Models (LLMs) into solid state materials chemistry laboratory courses, with the potential to significantly enhance student learning and engagement. Participants share and collaboratively develop innovative ways of using LLMs in laboratory settings, including designing pre-lab activities, assessing student preparedness, facilitating full virtual lab experiences, and aiding in post-lab analysis and reflection. The workshop also emphasizes the importance of understanding the limitations and potential pitfalls of AI, particularly in the context of laboratory safety, technical veracity, and ethical use. Participants work together to develop innovative demonstrations and applications of LLMs in solid-state materials chemistry labs, identify safety and effectiveness considerations, and foster new partnerships. The discussions and collaborative projects initiated during the workshop are expected to contribute to the evolution of pedagogical practices and deepen our understanding of the effective, safe, and responsible integration of AI tools in educational settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要如果有效使用,人工智能 (AI) 平台有潜力促进个性化、自定进度的学习和实时反馈,使教育更加公平,并满足多样化的学习方式和需求。这个为期 2 天的研讨会得到了支持。由 NSF 材料研究部的固态和材料化学项目发起,鼓励参与者开发创新方法和最佳实践,将广泛使用的大型语言模型(例如 ChatGPT 和 Bard)纳入本科生和大学的固态材料化学教育中。科罗拉多矿业学院的这个研讨会促进了包括研究生、博士后研究人员和教师在内的不同科学家和教育工作者群体之间的互动和合作,参与者共同致力于 (1) 开发在人工智能领域使用人工智能工具的创新方法。 (2) 确定在教育环境中使用这些工具的潜在局限性并讨论道德考虑因素。 NSF 资金支持研讨会参与者的旅行和住宿,以确保参与者的多元化。 技术摘要人工智能的可及性不断提高( AI)驱动的工具,例如ChatGPT 和巴德对于学生和教育工作者来说都需要教育实践的发展,该研讨会由 NSF 材料研究部的固态和材料化学项目支持,汇集了教师、博士后研究人员和学生,讨论纳入人工智能驱动的可能性。将大型语言模型 (LLM) 纳入固态材料化学实验室课程,有可能显着提高学生的学习和参与度,参与者分享并协作开发在实验室环境中使用 LLM 的创新方法,包括设计实验前活动、评估学生的准备情况、促进完整的虚拟实验室体验,并帮助进行实验室后分析和反思。研讨会还强调了了解人工智能的局限性和潜在陷阱的重要性,特别是在实验室安全、技术准确性和道德使用方面。开发法学硕士在固态材料化学实验室的创新示范和应用,确定安全性和有效性考虑因素,并培育新的伙伴关系。研讨会期间发起的讨论和合作项目预计将有助于教学实践的发展并加深我们的理解。的有效性,将人工智能工具安全、负责任地整合到教育环境中。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Annalise Maughan其他文献

Annalise Maughan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Annalise Maughan', 18)}}的其他基金

CAREER: Harnessing Dynamic Dipoles for Solid-State Ion Transport
职业:利用动态偶极子进行固态离子传输
  • 批准号:
    2339634
  • 财政年份:
    2024
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Continuing Grant

相似国自然基金

整合膜蛋白ITM2B及其剪切体的双向功能:调控脂代谢或促进迁移体形成
  • 批准号:
    32330051
  • 批准年份:
    2023
  • 资助金额:
    225 万元
  • 项目类别:
    重点项目
整合素αM介导巨噬细胞-成纤维细胞crosstalk在高尿酸肾病肾脏纤维化中的机制研究
  • 批准号:
    82300814
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
LRP12在α4整合素介导的T细胞肠道归巢和肠道炎症中的作用及机制研究
  • 批准号:
    32300633
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多组学数据整合的质量控制方法和应用
  • 批准号:
    32370701
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于肠道菌代谢功能整合表征技术的化浊类中药调脂降糖效应机制研究
  • 批准号:
    82374297
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Integrating Large Language Models for Long Horizon Task Planning in Multi-robot Scenarios
集成大型语言模型以实现多机器人场景中的长期任务规划
  • 批准号:
    24K07399
  • 财政年份:
    2024
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Building AI-Powered Responsible Workforce by Integrating Large Language Models into Computer Science Curriculum
通过将大型语言模型集成到计算机科学课程中,打造人工智能驱动的负责任的劳动力队伍
  • 批准号:
    2336061
  • 财政年份:
    2024
  • 资助金额:
    $ 3.51万
  • 项目类别:
    Standard Grant
Multiscale computational frameworks for integrating large-scale cortical dynamics, connectivity, and behavior
用于集成大规模皮层动力学、连接性和行为的多尺度计算框架
  • 批准号:
    10840682
  • 财政年份:
    2023
  • 资助金额:
    $ 3.51万
  • 项目类别:
Integrating Epidemiologic and Genomic Data to Elucidate the Genetic Overlap Between Congenital Anomalies and Pediatric Cancer
整合流行病学和基因组数据来阐明先天性异常和儿童癌症之间的遗传重叠
  • 批准号:
    10749761
  • 财政年份:
    2023
  • 资助金额:
    $ 3.51万
  • 项目类别:
Harmonizing and Integrating Nursing Data into Multidisciplinary Datasets to Evaluate Hospital Care and Readmissions of Older Adults with Alzheimer's Disease-Related Dementias
将护理数据协调并整合到多学科数据集中,以评估患有阿尔茨海默病相关痴呆症的老年人的医院护理和再入院情况
  • 批准号:
    10789306
  • 财政年份:
    2023
  • 资助金额:
    $ 3.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了