NSF Convergence Accelerator Track G: Combating Vulnerability and Unawareness in 5G Network Security

NSF 融合加速器轨道 G:对抗 5G 网络安全中的漏洞和无意识

基本信息

  • 批准号:
    2326898
  • 负责人:
  • 金额:
    $ 500万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Reliable and high-rate 5G wireless access has become a global necessity; however, the US has fallen behind in wireless leadership, lacking major radio access network (RAN) or cellular network manufacturers. Furthermore, cellular networks have not been designed for mission-critical communications and have exposed several security vulnerabilities. Consequently, the Department of Defense (DoD) faces challenges in using commercial off-the-shelf 5G products and commercial networks for US military operations. The Zero Trust X (ZTX) team, a consortium of interdisciplinary experts in the field of 5G and security, will research and develop a family of security solutions to establish a Zero Trust Chain (ZTC) that enables end-to-end security and protection for reliable use of 5G networks for DoD use cases. The proposed effort will generate knowledge and research outcomes tailored for use by US industry and DoD. Additionally, the project will train a diverse team of students in research and provide open-source software that facilitates portability, reproducibility, and integration with other Track G solutions of this program.The project's specific goal is to develop the ZTC software that enables military squads to securely share situational awareness in their operations using high-performance, yet often untrusted, 5G networks. The software solution leverages the flexibility of the 5G standard and implements innovative security solutions at different network nodes and layers to empower DoD operators to detect malicious entities in near-real time and establish communication mechanisms to prevent access to or control over DoD traffic. Specifically, through minimal cooperation with 5G network operators, part of the ZTC solution leverages Open-RAN (O-RAN) and 5G core-centric approaches for practical threat monitoring and mitigation. This is complemented by device-centric security enhancements to ensure that DoD devices also implement their own layer of security and do not solely depend on the security protocols of the network provider. Six key features set ZTC apart from other solutions: (i) it builds on the Open Artificial Intelligence Cellular (OAIC) platform for developing O-RAN threat monitoring and mitigation through RAN Intelligent Controllers; (ii) it offers end-to-end secure slicing across the 5G RAN and Core; (iii) it detects threats at user devices in near-real time; (iv) it protects communication through innovation at the application layer rather than modifying existing 5G physical layer protocols and algorithms; (v) it ensures location privacy and resiliency to unknown/unanticipated denial of service (DoS) attacks; and (vi) it does not require modifications to public 5G/O-RAN networks and standards, and only requires installation of low-overhead software modules on 5G user devices and cooperative 5G networks. The ZTX team's work is applicable to commercial and military 5G communication networks and to O-RAN. The ZTX team will implement and experimentally evaluate the proposed ZTC initially on a laboratory-scale integrated 5G/O-RAN testbed, and subsequently on other available testbeds to prepare for commercial transition. The team will apply Convergence Accelerator fundamentals to foster partnerships and to develop a sustainability model with an impact extending well beyond Phase 2 of the program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可靠、高速率的5G无线接入已成为全球必需品;然而,美国在无线领域的领导地位已经落后,缺乏主要的无线接入网络(RAN)或蜂窝网络制造商。 此外,蜂窝网络并不是为关键任务通信而设计的,并且暴露了一些安全漏洞。因此,国防部 (DoD) 在使用商用现成 5G 产品和商用网络进行军事行动方面面临挑战。零信任X(ZTX)团队是一个由5G和安全领域跨学科专家组成的联盟,将研究和开发一系列安全解决方案,以建立零信任链(ZTC),实现端到端的安全和保护为国防部用例可靠地使用 5G 网络。拟议的工作将产生适合美国工业界和国防部使用的知识和研究成果。此外,该项目将培训多元化的学生团队进行研究,并提供开源软件,以促进可移植性、可重复性以及与该项目的其他 Track G 解决方案的集成。该项目的具体目标是开发 ZTC 软件,使军事小队能​​够使用使用高性能但通常不受信任的 5G 网络安全地共享运营中的态势感知。该软件解决方案利用 5G 标准的灵活性,在不同的网络节点和层实施创新的安全解决方案,使国防部运营商能够近乎实时地检测恶意实体,并建立通信机制以防止访问或控制国防部流量。具体来说,通过与 5G 网络运营商进行最少的合作,ZTC 解决方案的一部分利用 Open-RAN (O-RAN) 和以 5G 核心为中心的方法来进行实际威胁监控和缓解。以设备为中心的安全增强功能对此进行了补充,以确保国防部设备也实现自己的安全层,而不仅仅依赖于网络提供商的安全协议。 ZTC 的六个关键功能与其他解决方案不同:(i) 它建立在开放人工智能蜂窝 (OAIC) 平台之上,用于通过 RAN 智能控制器开发 O-RAN 威胁监控和缓解; (ii) 它提供跨 5G RAN 和核心的端到端安全切片; (iii) 它近乎实时地检测用户设备上的威胁; (iv) 通过应用层的创新来保护通信,而不是修改现有的5G物理层协议和算法; (v) 确保位置隐私和抵御未知/意外拒绝服务 (DoS) 攻击的能力; (vi)不需要对公共5G/O-RAN网络和标准进行修改,只需要在5G用户设备和合作5G网络上安装低开销的软件模块。 ZTX团队的工作适用于商业和军用5G通信网络以及O-RAN。 ZTX 团队将首先在实验室规模的集成 5G/O-RAN 测试台上实施并实验评估拟议的 ZTC,随后在其他可用的测试台上实施和实验评估,为商业过渡做好准备。该团队将应用融合加速器的基本原理来促进合作伙伴关系,并开发一个可持续发展模型,其影响远远超出该计划的第二阶段。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Demo: SSxApp: Secure Slicing for O-RAN Deployments
演示:SSxApp:O-RAN 部署的安全切片
Time-Varying Noise Perturbation and Power Control for Differential-Privacy-Preserving Wireless Federated Learning
用于差分隐私保护无线联合学习的时变噪声扰动和功率控制
  • DOI:
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dang Qua Nguyen and Taejoon Kim
  • 通讯作者:
    Dang Qua Nguyen and Taejoon Kim
Toward Secure and Efficient O-RAN Deployments: Secure Slicing xApp Use Case
实现安全高效的 O-RAN 部署:安全切片 xApp 用例
Successful Recovery Performance Guarantees of SOMP Under the $\ell _{2}$-Norm of Noise
SOMP 在 $ell _{2}$-Norm 噪声下的成功恢复性能保证
A Decentralized Pilot Assignment Algorithm for Scalable O-RAN Cell-Free Massive MIMO
用于可扩展 O-RAN 无小区大规模 MIMO 的分散式导频分配算法
  • DOI:
    10.1109/jsac.2023.3336154
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    16.4
  • 作者:
    Oh, Myeung Suk;Das, Anindya Bijoy;Hosseinalipour, Seyyedali;Kim, Taejoon;Love, David J.;Brinton, Christopher G.
  • 通讯作者:
    Brinton, Christopher G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taejoon Kim其他文献

Leveraging subspace information for low-rank matrix reconstruction
利用子空间信息进行低秩矩阵重建
  • DOI:
    10.1016/j.sigpro.2019.05.013
  • 发表时间:
    2018-05-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Zhang;Taejoon Kim;Guojun Xiong;S. Leung
  • 通讯作者:
    S. Leung
Physical Layer and Medium Access Control Design in Energy Efficient Sensor Networks: An Overview
节能传感器网络中的物理层和介质访问控制设计:概述
True-Time Delay-Based Hybrid Precoding Under Time Delay Constraints in Wideband THz Massive MIMO Systems
宽带太赫兹大规模 MIMO 系统中时延约束下基于真实时延的混合预编码
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dang Qua Nguyen;Taejoon Kim
  • 通讯作者:
    Taejoon Kim
A Sequential Subspace Method for Millimeter Wave MIMO Channel Estimation
毫米波MIMO信道估计的顺序子空间方法
On the Achievable Rate of Generalized Spatial Modulation Using Multiplexing Under a Gaussian Mixture Model
高斯混合模型下复用广义空间调制的可实现速率
  • DOI:
    10.1109/tcomm.2016.2515624
  • 发表时间:
    2016-01-07
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Ahmad A. I. Ibrahim;Taejoon Kim;D. Love
  • 通讯作者:
    D. Love

Taejoon Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taejoon Kim', 18)}}的其他基金

Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225577
  • 财政年份:
    2023
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track G: Combating Vulnerability and Unawareness in 5G Network Security: Signaling and Full-Stack Approach
NSF 融合加速器轨道 G:对抗 5G 网络安全中的漏洞和无意识:信令和全栈方法
  • 批准号:
    2226447
  • 财政年份:
    2022
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
GOALI: CNS: Medium: Communication-Computation Co-Design for Rural Connectivtiy and Intelligence under Nonuniformity: Modeling, Analysis, and Implementation
目标:CNS:媒介:非均匀性下农村互联和智能的通信计算协同设计:建模、分析和实现
  • 批准号:
    2212565
  • 财政年份:
    2022
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant

相似国自然基金

通算协同的高准确、快收敛无线分布式学习优化研究
  • 批准号:
    62301222
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多维连续变体飞行器在线动态协调轨迹规划与预设性能/收敛时间控制
  • 批准号:
    62373124
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
数据驱动的降维优化流场加速收敛方法研究
  • 批准号:
    12372290
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
Stokes方程的高阶元有限体积法的稳定性和收敛性
  • 批准号:
    12301506
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
  • 批准号:
    12301284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF Convergence Accelerator Track K: Equity in water information for community capacity building
NSF 融合加速器轨道 K:社区能力建设的水信息公平
  • 批准号:
    2344375
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: UAV-assisted dual-comb spectroscopic detection, localization, and quantification of multiple atmospheric trace-gas emissions
NSF 收敛加速器轨道 L:无人机辅助的双梳光谱检测、定位和多种大气痕量气体排放的量化
  • 批准号:
    2344395
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Enabling novel photonic neuromorphic devices through bridging DNA-programmable assembly and nanofabrication
NSF 融合加速器轨道 M:通过桥接 DNA 可编程组装和纳米制造实现新型光子神经形态设备
  • 批准号:
    2344415
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
  • 批准号:
    2344426
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Bioinspired Multispectral Imaging Technology for Intraoperative Cancer Detection
NSF 融合加速器轨道 M:用于术中癌症检测的仿生多光谱成像技术
  • 批准号:
    2344460
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了