Developing self-assembly strategies for the fabrication of well-defined and large area 2D coordination polymers

开发用于制造明确的大面积二维配位聚合物的自组装策略

基本信息

  • 批准号:
    2326228
  • 负责人:
  • 金额:
    $ 56.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Non-technical SummaryThe design of topological materials is attracting enormous research attention due to the possibility of accessing novel and exotic physical phenomena such as Mott transitions, high-temperature superconductivity, topological insulators, colossal magnetoresistance, and giant magneto-electric effects, which can be used to achieve dissipation-less quantum electronic states. With support from the Solid State and Materials Chemistry program in the Division of Materials Research, Prof. Luisa Whitakker-Brooks and her group at the University of Utah will investigate and address the challenges associated with the synthesis and crystallinity of 2D coordination polymers (2DCPs) for their potential application as topological materials. The aim is to develop synthetic routes and self-assembly strategies that can lead to defect-free 2DCP thin films with controlled crystallinity over large areas. As such, by combining computational simulations and experimental techniques, the research aims to identify the kinetic bottlenecks that contribute to defect formation during the synthesis of 2DCPs. This integrated approach provides a comprehensive understanding of the factors influencing the formation and properties of 2DCPs, not only benefiting the targeted materials but also potentially contributing to the broader family of 2DCPs. Additionally, the research project aims to create a database of electronic structures and predicted quantum properties comprising 2DCPs. This database will contribute to the understanding and characterization of 2DCPs and can serve as a valuable resource for future studies in quantum electronics. The broader community is engaged by executing two outreach activities: (1) “De la Mano de la Ciencia en el Valle” (translation: Science Frontiers in the Valley) seminar series as a means to promote and share cutting-edge science results with the Hispanic population in the Utah Valley and (2) Training high-school teachers and aiding in the development of teaching curricula through participation in the Master of Science for Secondary School Teacher (MSSST) program at the University of Utah. The latter allow for training teachers and students on materials synthesis and device fabrication to strengthen the microelectronic workforce.Technical SummaryCrystalline 2D coordination polymers (2DCPs) have been predicted to be topological materials, including quantum spin/anomalous Hall insulators, topological flat bands and superconductors with a range of electromagnetic properties essential for the realization of novel quantum information systems. 2DCPs provide a tunable material platform wherein the molecular structure of building blocks and the geometry of the crystals they form can be designed using methods of organic chemistry. However, experimental studies of these materials have so far failed to confirm their predicted quantum properties. The main reason for the disappointing performance of 2DCPs as topological materials is their poor crystallinity. If the potential of 2DCPs as topological materials is to be realized, synthetic routes to thin films with markedly improved crystallinity need to be found. This project, supported by the Solid State and Materials Chemistry program in the NSF’s Division of Materials Research, seeks to identify the microscopic kinetic bottlenecks that lead to defect formation in the synthesis of 2DCPs with an integrated computational and experimental approach. The generated insight into defect formation processes is applied to develop new self-assembly strategies that allow the formation of 2DCP thin films that are defect-free over length scales exceeding tens of microns, thus unlocking their theoretical potential as topological materials. The benefits and outcomes of the proposed research efforts include (1) The development of synthetic protocols that allow for the fabrication of large-area, highly oriented 2DCP thin films with controlled defect states; (2) The creation of a database of electronic structures and predicted quantum properties of proposed 2DCPs; (3) Formulation of self-assembly strategies backed by molecular dynamics simulations and experimental data with potential application to the broader family of 2DCPs; and (4) Elucidation of electronic, thermal, and optical properties of proposed 2DCPs with a route to their application in quantum information science. The synthesis-characterization-device physics protocols proposed in this research program define the toolbox that allow us to fulfill the goal of rational materials design towards quantum electronic technologies. The knowledge gained and tools developed benefit parallel fields investigating n-type organic materials for light-emitting diodes, thin-film transistors, and photovoltaics. This research project provides unique cross-disciplinary training in materials chemistry and device fabrication to graduate and undergraduate students as well as high-school students and teachers with a closely mentored professional experience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要拓扑材料的设计由于能够获得莫特跃迁、高温超导、拓扑绝缘体、巨磁阻和巨磁电效应等新颖奇特的物理现象而吸引了巨大的研究关注。在材料研究部固态和材料化学项目的支持下,Luisa 教授用于实现无耗散的量子电子态。 Whitakker-Brooks 和她在犹他大学的团队将研究并解决与二维配位聚合物 (2DCP) 的合成和结晶度相关的挑战,以实现其作为拓扑材料的潜在应用,目的是开发合成路线和自组装策略。因此,通过结合计算模拟和实验技术,该研究旨在确定合成过程中导致缺陷形成的动力学瓶颈。这种综合方法提供了对影响 2DCP 形成和特性的因素的全面了解,不仅有利于材料,而且有可能为更广泛的 2DCP 系列做出贡献。此外,该研究项目旨在创建一个电子结构数据库。该数据库将有助于理解和表征 2DCP,并可以作为量子电子学未来研究的宝贵资源,通过执行两项外展活动来参与: (1) “De la Mano de la Ciencia en el Valle”(翻译:山谷中的科学前沿)研讨会系列,作为向犹他山谷的西班牙裔人口推广和分享尖端科学成果的手段;(2) 培训通过参加犹他大学的中学教师科学硕士(MSSST)项目,帮助高中教师开发教学课程,后者可以对教师和学生进行材料合成和设备制造方面的培训,以加强对材料合成和设备制造的培训。技术摘要晶体二维配位聚合物(2DCP)被预测为拓扑材料,包括量子自旋/反常霍尔绝缘体、拓扑平带和超导体,其具有实现新型量子信息系统所必需的一系列电磁特性。一个可调材料平台,可以使用有机化学方法来设计构建块的分子结构及其形成的晶体的几何形状。迄今为止,这些材料未能证实其预测的量子特性,2DCP 作为拓扑材料的性能令人失望的主要原因是它们的结晶度较差。如果要实现 2DCP 作为拓扑材料的潜力,则需要合成具有该项目由美国国家科学基金会材料研究部的固态和材料化学项目支持,旨在找出导致缺陷形成的微观动力学瓶颈。通过综合计算和实验方法合成 2DCP,对缺陷形成过程的深入了解可用于开发新的自组装策略,从而形成长度超过数十微米的无缺陷 2DCP 薄膜,从而解锁。其作为拓扑材料的理论潜力包括(1)开发合成方案,允许制造具有受控缺陷态的大面积、高度定向的 2DCP 薄膜;创建所提出的 2DCP 的电子结构和预测量子特性的数据库;(3) 制定由分子动力学模拟和实验数据支持的自组装策略,并可能应用于更广泛的 2DCP 系列;所提出的 2DCP 的热和光学特性及其在量子信息科学中的应用途径 本研究计划中提出的合成-表征-器件物理协议定义了工具箱,使我们能够实现合理材料设计的目标。所获得的知识和开发的工具有益于研究发光二极管、薄膜晶体管和光伏发电的 n 型有机材料的平行领域。该研究项目为毕业生提供了材料化学和器件制造方面的独特跨学科培训。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luisa Whittaker-Brooks其他文献

Intermediate metallic phase in VO2observed with scanning tunneling spectroscopy
  • DOI:
    10.1039/c4cp01551g
  • 发表时间:
    2014-06
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    John Byron Hatch;Luisa Whittaker-Brooks;Tai-Lung Wu;Gen Long;Hao Zeng;G. Sambandamurthy;Sarbajit Banerjee;Hong Luo
  • 通讯作者:
    Hong Luo
Enhanced sensing in mixed porous–solid photonic stacks
  • DOI:
    10.1039/c5tc03581c
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Wendy J. Nimens;Luisa Whittaker-Brooks;Michael H. Bartl
  • 通讯作者:
    Michael H. Bartl
Concepts and principles of self-n-doping in perylene diimide chromophores for applications in biochemistry, energy harvesting, energy storage, and catalysis
  • DOI:
    10.1039/d2mh00279e
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Daniel Powell;Luisa Whittaker-Brooks
  • 通讯作者:
    Luisa Whittaker-Brooks
Vertically oriented TiS2−xnanobelt arrays as binder- and carbon-free intercalation electrodes for Li- and Na-based energy storage devices
  • DOI:
    10.1039/c8ta05645e
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Casey G. Hawkins;Luisa Whittaker-Brooks
  • 通讯作者:
    Luisa Whittaker-Brooks
Charge transfer states and carrier generation in 1D organolead iodide semiconductors
  • DOI:
    10.1039/d1ta03325e
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Eric Amerling;Yaxin Zhai;Bryon W. Larson;Yi Yao;Brian Fluegel;Zbyslaw Owczarczyk;Haipeng Lu;Luisa Whittaker-Brooks;Volker Blum;Jeffrey L. Blackburn
  • 通讯作者:
    Jeffrey L. Blackburn

Luisa Whittaker-Brooks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luisa Whittaker-Brooks', 18)}}的其他基金

Equipment: MRI Track 1: Acquisition of an integrated physical property measurement system for the electrical, optical, and magnetic characterization of materials
设备:MRI 轨道 1:获取用于材料电学、光学和磁性表征的集成物理特性测量系统
  • 批准号:
    2319964
  • 财政年份:
    2023
  • 资助金额:
    $ 56.92万
  • 项目类别:
    Standard Grant
CAS: Magnetic moment-induced adaptability of vertically-oriented 1D electrochemical systems
CAS:垂直定向一维电化学系统的磁矩诱导适应性
  • 批准号:
    2203926
  • 财政年份:
    2022
  • 资助金额:
    $ 56.92万
  • 项目类别:
    Standard Grant
Developing in operando structure-property-function guidelines for small molecule organic electron acceptors and its implication on device performance and charge carrier mobility
小分子有机电子受体的操作结构-性能-功能指南的开发及其对器件性能和载流子迁移率的影响
  • 批准号:
    2016191
  • 财政年份:
    2020
  • 资助金额:
    $ 56.92万
  • 项目类别:
    Standard Grant
Developing in operando structure-property-function guidelines for small molecule organic electron acceptors and its implication on device performance and charge carrier mobility
小分子有机电子受体的操作结构-性能-功能指南的开发及其对器件性能和载流子迁移率的影响
  • 批准号:
    2016191
  • 财政年份:
    2020
  • 资助金额:
    $ 56.92万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a laboratory beamline small (wide)-angle X-ray scattering tool for in-situ characterization of (bio)materials
MRI:获取实验室光束线小(广角)角度 X 射线散射工具,用于(生物)材料的原位表征
  • 批准号:
    2018413
  • 财政年份:
    2020
  • 资助金额:
    $ 56.92万
  • 项目类别:
    Standard Grant
EAGER: manipulating spin dynamics in thionated perylene diimide organic semiconductors: towards organic spin caloritronic devices
EAGER:操纵硫代苝二酰亚胺有机半导体中的自旋动力学:走向有机自旋热电子器件
  • 批准号:
    1824263
  • 财政年份:
    2018
  • 资助金额:
    $ 56.92万
  • 项目类别:
    Standard Grant

相似国自然基金

Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
  • 批准号:
    82371813
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“为自己的健康负责”——基于当责视角的健康管理APP对用户行为的作用机制研究
  • 批准号:
    72302199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
  • 批准号:
    32302161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于序贯递药体系实现对非酒精性脂肪肝的高渗给药和长效治疗
  • 批准号:
    32001001
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing controlled release immune complexes to treat multiple sclerosis
开发控释免疫复合物来治疗多发性硬化症
  • 批准号:
    10679346
  • 财政年份:
    2023
  • 资助金额:
    $ 56.92万
  • 项目类别:
Developing DNA-Based Molecular Robots
开发基于 DNA 的分子机器人
  • 批准号:
    10630190
  • 财政年份:
    2022
  • 资助金额:
    $ 56.92万
  • 项目类别:
Novel HCV vaccine antigens and nanoparticles
新型 HCV 疫苗抗原和纳米颗粒
  • 批准号:
    10557879
  • 财政年份:
    2022
  • 资助金额:
    $ 56.92万
  • 项目类别:
Developing a screening platform to identify inhibitors of pathological self-assembly of Tau
开发筛选平台来鉴定 Tau 病理性自组装抑制剂
  • 批准号:
    10323679
  • 财政年份:
    2021
  • 资助金额:
    $ 56.92万
  • 项目类别:
Developing a Multi-epitope Pan-Coronavirus Vaccine
开发多表位泛冠状病毒疫苗
  • 批准号:
    10669702
  • 财政年份:
    2020
  • 资助金额:
    $ 56.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了