Collaborative Research: Very High Heat-flux Cooling through Stable Energy-Efficient Macro-scale Partial Flow-boiling Using Microstructured Surfaces and Ultrasonics
合作研究:利用微结构表面和超声波通过稳定节能的宏观局部流动沸腾实现极高热通量冷却
基本信息
- 批准号:2327965
- 负责人:
- 金额:$ 34.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The urgent demand for high power-density electronic devices in various industries has created a pressing need for efficient and cost-effective cooling solutions. One promising approach is the utilization of advanced and stable flow-boiling processes, employing environmentally friendly dielectric fluids with low boiling temperatures (40-50 deg C) near atmospheric pressures, and relatively small operating temperature differences between the maximum allowable chip temperatures and the cooling dielectric fluid. This project will demonstrate an efficient cooling strategy by employing highly stable and energy-efficient partial flow-boiling of Novec/3M-engineered fluids at high heat fluxes (50 - 200 W/cm2 or more). The proposed approach will involve fluid-filled microstructured surfaces that undergo special structural and sub-structural micro-nano-scale vibrations, consuming very small amounts of energy. An attractive benefit of this approach is the generation of significantly higher pressure vapor (2-3 times more than other approaches), enabling significant waste heat recovery from cooling heat exchangers: allowing these phenomena, when scaled to large systems (such as data centers), to recover a large portion of the waste heat (e.g., 200 TWh globally from data centers alone) as clean electricity.The proposed research will leverage the stable energy-efficient cooling performance of partial flow-boiling in a millimeter-scale heat sink with a fluid-filled microstructured boiling surface for enhanced nucleate boiling (ENB). This proposal will deliver on achieving significant and sustainable vaporization rates within the heterogeneously nucleated bubbles by leveraging the acoustothermal effects caused by piezo-induced ultra-sonic micro-vibrations of the sub-structures (i.e. of mesh wires at frequency: 1-10 MHz; amplitude: nm/µm range), with superposed amplitude modulations at sonic frequencies ranging from 100 to 10,000 Hz and resulting in µm-scale amplitudes. The sonic frequencies will promote efficient and resonant structural micro-vibrations, alternately enhancing both liquid rewetting and the removal of micro-bubbles from the microstructured boiling region, allowing them to transition into the macro-scale two-phase flow within the heat sink. Hence, ENB will be achieved through the synergistic combination of resonant and energy-efficient structural and sub-structural micro-vibrations. Furthermore, the additional heating induced by this approach will generate high pressures within the vapor that can be harnessed to develop new waste heat recovery technologies. This proposal, therefore, with the potential to develop novel energy-efficient and environment-friendly cooling solutions for high-power density devices as well as strategies for improved waste heat recovery will have significant applications in data centers and the hybrid electric vehicle market. Furthermore, the project will foster university-industry collaborations, facilitate human resources development through student mentoring, and contribute to promoting diversity and inclusiveness within the field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
各行业对高功率密度电子设备的迫切需求迫切需要高效且具有成本效益的冷却解决方案,一种有前途的方法是利用先进且稳定的流动沸腾工艺,采用低沸点的环保介电流体。温度(40-50 摄氏度)接近大气压,最大允许芯片温度与冷却介电液之间的工作温差相对较小。该项目将通过采用高效稳定且节能的分流沸腾来演示冷却策略。的Novec/3M 工程流体具有高热通量(50 - 200 W/cm2 或更高)。所提出的方法将涉及充满流体的微结构表面,这些表面会经历特殊的结构和亚结构微纳米级振动,消耗非常少的量。这种方法的一个有吸引力的好处是产生明显更高压力的蒸汽(比其他方法多 2-3 倍),从而能够从冷却热交换器中回收大量废热:当扩展到大型系统(例如,数据中心),将大部分废热(例如,全球仅从数据中心就回收了 200 TWh)作为清洁电力。拟议的研究将利用毫米级部分流沸腾的稳定节能冷却性能具有填充流体的微结构沸腾表面的散热器,用于增强核沸腾(ENB)。该提案将利用声热在异质核气泡内实现显着且可持续的蒸发速率。由子结构的压电感应超声波微振动(即频率:1-10 MHz 的网线;振幅:nm/μm 范围)引起的效应,在声波频率范围为 100 至 10,000 时叠加振幅调制Hz 并产生微米级的振幅,声波频率将促进有效的共振结构微振动,交替增强液体的再润湿和去除。因此,ENB 将通过谐振和节能结构和子结构微结构的协同组合来实现。此外,这种方法引起的额外热量将在蒸汽内产生高压,可用于开发新的废热回收技术,因此,该提案具有开发新型节能环保冷却技术的潜力。解决方案高功率密度设备以及改进废热回收的策略将在数据中心和混合动力电动汽车市场中具有重要应用。此外,该项目将促进大学与行业的合作,通过学生指导促进人力资源开发,并为以下领域做出贡献。促进该领域的多样性和包容性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amitabh Narain其他文献
Amitabh Narain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amitabh Narain', 18)}}的其他基金
Fundamental Investigations for Very High Heat-Flux Innovative Operations of Milli-Meter Scale Flow Boilers
毫米级流量锅炉极高热通量创新运行的基础研究
- 批准号:
1402702 - 财政年份:2014
- 资助金额:
$ 34.41万 - 项目类别:
Standard Grant
Flow Prediction and Fluctuation-sensitivity Investigations for Quasi-steady Shear Driven Condensing Flows in Milli-meter to Micro-meter Scale Two-Phase Systems
毫米至微米级两相系统中准稳态剪切驱动冷凝流的流量预测和波动敏感性研究
- 批准号:
1033591 - 财政年份:2010
- 资助金额:
$ 34.41万 - 项目类别:
Standard Grant
Prediction and Attainment Capability for Quasi-Steady Internal Condensing Flows: An Integrated Experimental/Computational Approach
准稳态内部冷凝流的预测和实现能力:综合实验/计算方法
- 批准号:
0086988 - 财政年份:2001
- 资助金额:
$ 34.41万 - 项目类别:
Standard Grant
相似国自然基金
基于导热结构基元序构的低维AlN非常规生长控制及其形貌调控机制研究
- 批准号:52372077
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
非常规价态铀、镎、钚的制备及萃取分离化学研究
- 批准号:22376116
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
马氏调制过程的非常返性与拟平稳分布研究
- 批准号:12301168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
空间受限的过渡金属氧化物中拓扑磁结构及非常规输运性质的研究
- 批准号:12304153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
我国非常洪水的区域分布规律及形成机制研究
- 批准号:52379012
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Effects of Genetic ANGPTL3 Deficiency on Hepatic Lipid Regulation and Lipoprotein Production
遗传性 ANGPTL3 缺陷对肝脏脂质调节和脂蛋白产生的影响
- 批准号:
10605624 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Collaborative Research: Very High Heat-flux Cooling through Stable Energy-Efficient Macro-scale Partial Flow-boiling Using Microstructured Surfaces and Ultrasonics
合作研究:利用微结构表面和超声波通过稳定节能的宏观局部流动沸腾实现极高热通量冷却
- 批准号:
2327966 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Standard Grant
Collaborative Research: Very High Heat-flux Cooling through Stable Energy-Efficient Macro-scale Partial Flow-boiling Using Microstructured Surfaces and Ultrasonics
合作研究:利用微结构表面和超声波通过稳定节能的宏观局部流动沸腾实现极高热通量冷却
- 批准号:
2327966 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Standard Grant
Determinants of Newborn Health and Health Care Trajectories in the First Year of Life
新生儿健康的决定因素和生命第一年的医疗保健轨迹
- 批准号:
10428462 - 财政年份:2021
- 资助金额:
$ 34.41万 - 项目类别:
Disparities in Processes and Outcomes of Care Across Asian/Pacific Islander Populations at Childbirth
亚洲/太平洋岛民分娩护理过程和结果的差异
- 批准号:
10315907 - 财政年份:2021
- 资助金额:
$ 34.41万 - 项目类别: