I-Corps: AI-Based Decision Support for Management of Bridge Networks
I-Corps:基于人工智能的桥梁网络管理决策支持
基本信息
- 批准号:2326446
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of decision support software systems for optimal management of transportation networks. These systems address risks associated with network assets as well as the emergent traffic dynamics that would likely ensue in natural hazards. Planners from various entities, including state agencies and municipalities may use this system for optimal asset management for transportation infrastructure, based on the current conditions of the physical infrastructure and the predicted high priority areas. This decision support system also may enhance evacuation planning and post-disaster network management procedures, as it can provide mobility maps that are updated with incoming data during and after a disaster.This I-Corps project is based on the development of graph neural network (GNN) models that may be used to estimate the network response under probabilistic natural hazards with minimal computational time. These neural network models are designed to calculate various response measures, such as connectivity, shortest distance, and travel times. The modular feature of GNNs allows for models that are developed using data from networks in one city or region to be usable in another region. These models may be used for extreme events such as earthquakes, floods, hurricanes, and tornadoes. The proposed technology is building upon successful numerical experiments on transportation networks in California, New York, and Florida for seismic and flood hazards. The accuracy, computational efficiency, and robustness of these GNN models are documented. The decision support that will be built on these GNN models will feature intelligent tools that evaluate the current conditions of the physical infrastructure, rank investment decisions related to network planning to focus on high priority concerns. It also may facilitate effective emergency response by combining the same predictive capabilities with real-time network data to effectively update response plans.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目更广泛的影响/商业潜力是开发用于优化交通网络管理的决策支持软件系统。这些系统可解决与网络资产相关的风险以及自然灾害中可能出现的突发流量动态。包括国家机构和市政当局在内的各个实体的规划者可以根据物理基础设施的当前状况和预测的高优先级区域,使用该系统对交通基础设施进行优化资产管理。该决策支持系统还可以增强疏散规划和灾后网络管理程序,因为它可以提供在灾难期间和灾难后根据传入数据进行更新的移动地图。这个 I-Corps 项目基于图神经网络的开发( GNN)模型可用于以最少的计算时间估计概率性自然灾害下的网络响应。这些神经网络模型旨在计算各种响应度量,例如连通性、最短距离和行程时间。 GNN 的模块化功能允许使用一个城市或地区的网络数据开发的模型可以在另一个地区使用。这些模型可用于地震、洪水、飓风和龙卷风等极端事件。拟议的技术建立在加利福尼亚州、纽约州和佛罗里达州交通网络针对地震和洪水灾害的成功数值实验的基础上。这些 GNN 模型的准确性、计算效率和鲁棒性都有记录。基于这些 GNN 模型的决策支持将采用智能工具来评估物理基础设施的当前状况,对与网络规划相关的投资决策进行排序,以重点关注高优先级问题。它还可以通过将相同的预测能力与实时网络数据相结合来有效地更新响应计划,从而促进有效的应急响应。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hadi Meidani其他文献
Physics-informed Mesh-independent Deep Compositional Operator Network
物理信息独立于网格的深度组合算子网络
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Weiheng Zhong;Hadi Meidani - 通讯作者:
Hadi Meidani
FO-PINNs: A First-Order formulation for Physics Informed Neural Networks
FO-PINN:物理信息神经网络的一阶公式
- DOI:
- 发表时间:
2022-10-25 - 期刊:
- 影响因子:0
- 作者:
R. J. Gladstone;M. A. Nabian;N. Sukumar;Ankit Srivastava;Hadi Meidani - 通讯作者:
Hadi Meidani
Heterogeneous Graph Neural Networks for End-to-End Traffic Assignment and Traffic Flow Learning
- DOI:
- 发表时间:
2023-10-19 - 期刊:
- 影响因子:0
- 作者:
Tong Liu;Hadi Meidani - 通讯作者:
Hadi Meidani
Mesh-based GNN surrogates for time-independent PDEs
基于网格的 GNN 代理与时间无关的偏微分方程
- DOI:
10.1038/s41598-024-53185-y - 发表时间:
2024-02-09 - 期刊:
- 影响因子:4.6
- 作者:
R. J. Gladstone;Helia Rahmani;V. Suryakumar;Hadi Meidani;Marta D'Elia;Ahmad Zareei - 通讯作者:
Ahmad Zareei
Educational Technology Platforms and Shift in Pedagogical Approach to Support Computing Integration Into Two Sophomore Civil and Environmental Engineering Courses
教育技术平台和教学方法的转变,支持将计算集成到二年级土木与环境工程课程中
- DOI:
10.18260/1-2--37005 - 发表时间:
- 期刊:
- 影响因子:0
- 作者:
S. Koloutsou;Eleftheria Kontou;Christopher Tessum;Lei Zhao;Hadi Meidani - 通讯作者:
Hadi Meidani
Hadi Meidani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hadi Meidani', 18)}}的其他基金
SCC-CIVIC-PG Track A: Jitney+: Redesign of a Legacy Mobility Service for Lower-income Communities in the Post-COVID Digital Age
SCC-CIVIC-PG 轨道 A:Jitney:为后 COVID 数字时代的低收入社区重新设计传统移动服务
- 批准号:
2044055 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Efficient Predictive Modeling for Infrastructure Systems Using Polynomial Approximation
职业:使用多项式逼近对基础设施系统进行高效预测建模
- 批准号:
1752302 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Citizen Science EAGER: Quantifying Uncertainty in Crowd Response for Reliable Wind Hazard and Damage Assessment
公民科学 EAGER:量化人群反应的不确定性,以进行可靠的风灾和损害评估
- 批准号:
1645386 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
基于多模态分子影像和人工智能的结直肠癌PD-L1表达演变预测及机制研究
- 批准号:82302185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算模拟和人工智能融合策略的卡宾蛋白酶优化和设计
- 批准号:22303102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单细胞空间组学数据深度解析细胞组装互作的人工智能方法策略
- 批准号:32330022
- 批准年份:2023
- 资助金额:211 万元
- 项目类别:重点项目
基于靶向纳米微泡超声造影视频的人工智能模型预测药物摄取及免疫治疗效果
- 批准号:82371992
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于深度渐进学习的CT图像重建和多任务协同式AI辅助诊断模型研究
- 批准号:62371190
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Artificial Intelligence (AI)-based Image Fusion Technology for Guiding Prostate Biopsies
I-Corps:基于人工智能 (AI) 的图像融合技术,用于指导前列腺活检
- 批准号:
2333204 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Artificial Intelligence (AI)-Based Sensing and Data Efficient Sampling, Transmission, Storage, Analysis and Cloud Computing
I-Corps:基于人工智能(AI)的传感和数据高效采样、传输、存储、分析和云计算
- 批准号:
2235121 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Tree-based artificial intelligence (AI) models for financial fraud detection
I-Corps:用于金融欺诈检测的基于树的人工智能 (AI) 模型
- 批准号:
2228243 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Tree-based artificial intelligence (AI) models for financial fraud detection
I-Corps:用于金融欺诈检测的基于树的人工智能 (AI) 模型
- 批准号:
2228243 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant