eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
基本信息
- 批准号:2325185
- 负责人:
- 金额:$ 11.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mathematical models are a widely used tool for improving our understanding, ability to predict, and ability to control the behavior of biological systems. Such models are often encoded as chemical reaction networks (CRNs), involving large collections of reactions that describe how constituents of the system, such as proteins, change their states over time. CRN model components are often only partially known, and thus methods which mix theoretical physics-based models for known components, with techniques that estimate unknown components and their dynamics from experimental data, can improve their predictive capabilities. This is the domain of Scientific Machine Learning (SciML). This project will develop new SciML methods for constructing, simulating, and analyzing CRN models that include randomness in the evolution of protein states, an important feature to accurately predict the behavior of chemical systems within individual biological cells. The new methods will be applied to problems in systems and synthetic biology (the understanding of native, and the development of novel, cellular systems), but will also be applicable across a wide range of fields involving CRNs (including epidemiology, physical chemistry, and pharmacology). Via their incorporation into widely used open source software libraries of the SciML organization, the methods will be freely available for use by any researcher studying problems across science and engineering. Training opportunities will be provided for a postdoctoral scholar and an undergraduate researcher, who will gain experience working in interdisciplinary teams, developing SciML methods, integrating these methods into open source software, and applying the new software to study biological systems.This project extends the mathematical understanding of discrete stochastic derivative estimators to facilitate scaling Scientific Machine Learning (SciML) training techniques to chemical reaction networks (CRNs). One distinct difficulty in extending SciML to cellular systems is their proneness to noisy behaviors, as they are modeled as discrete stochastic jump processes via stochastic simulation algorithms such as the Gillespie method. Such processes are problematic for many SciML workflows which critically depend on automatic differentiation (AD) to scale training techniques. This is because there previously existed no general method for applying AD to them in an unbiased manner with low variance estimators. This project builds on a recent extension of AD to discrete stochastic processes which is capable of generating unbiased low variance derivative estimators. The rigorous connection between the generated stochastic process for the derivative estimator and the derivative probability evolution given by the sensitivity equations will be proven, thus establishing a firm theoretical underpinning for the unbiasedness and variance of the derivative estimator in the context of CRNs. The feasibility to deploy discrete stochastic AD (DSAD) on cellular models to perform model calibration will be demonstrated, and SciML universal differential equation methods for model discovery will be generalized to the theory-based data-driven discovery of missing reactions in CRNs. Finally, the applicability of these methods will be demonstrated on a range of cellular systems (including the B-cell antigen receptor signaling system, the σV lysozyme stress response system, and a mixed feedback oscillator).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学模型是一种广泛使用的工具,用于提高我们对生物系统行为的理解、预测和控制能力,此类模型通常被编码为化学反应网络 (CRN),即描述化学成分如何变化的大量反应。系统(例如蛋白质)会随着时间的推移而改变其状态,因此,将已知成分的基于理论物理的模型与根据实验数据估计未知成分及其动态的技术相结合的方法可以得到改进。这是他们的预测能力的领域。科学机器学习 (SciML)。该项目将开发新的 SciML 方法,用于构建、模拟和分析 CRN 模型,其中包括蛋白质状态演化的随机性,这是准确预测单个新生物细胞内化学系统行为的重要特征。方法将应用于系统和合成生物学中的问题(对天然的理解和新颖的开发,涉及细胞系统),但也将适用于 CRN 的广泛领域(包括流行病学、物理化学和药理学) )。 通过这些方法将被纳入 SciML 组织广泛使用的开源软件库中,任何研究科学和工程问题的研究人员都可以免费使用这些方法,并将为博士后学者和本科生研究人员提供培训机会,他们将获得经验。在跨学科团队中工作,开发 SciML 方法,将这些方法集成到开源软件中,并应用新软件来研究生物系统。该项目扩展了对离散随机导数估计器的数学理解,以促进将科学机器学习 (SciML) 训练技术扩展到化学反应网络(CRN)。将 SciML 扩展到细胞系统的一个明显困难是它们容易出现噪声行为,因为它们通过随机模拟算法(例如 Gillespie 方法)建模为离散随机跳跃过程,这样的过程对于许多严重依赖的 SciML 工作流程来说是有问题的。这是因为以前不存在使用低方差估计器以无偏方式将 AD 应用于它们的通用方法。能够生成无偏低方差导数估计量的随机过程将被证明,生成的导数估计量的随机过程与灵敏度方程给出的导数概率演化之间的严格联系,从而为无偏性和方差建立坚实的理论基础。将演示在 CRN 背景下部署离散随机 AD (DSAD) 来执行模型校准的可行性,并且将演示用于模型发现的 SciML 通用微分方程方法。最后,这些方法的适用性将在一系列细胞系统(包括 B 细胞抗原受体信号系统、σV 溶菌酶应激反应系统、该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Isaacson其他文献
Extending JumpProcesses.jl for fast point process simulation with time-varying intensities
扩展 JumpProcesses.jl 以实现具有时变强度的快速点过程模拟
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
G. Zagatti;Samuel Isaacson;Christopher Rackauckas;Vasily Ilin;See;Stéphane Bressan - 通讯作者:
Stéphane Bressan
Samuel Isaacson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Isaacson', 18)}}的其他基金
Collaborative Research: Computational Methods for Understanding the Influence of Cellular Geometry and Substructure on Signaling
合作研究:了解细胞几何形状和亚结构对信号传导影响的计算方法
- 批准号:
1902854 - 财政年份:2019
- 资助金额:
$ 11.97万 - 项目类别:
Continuing Grant
U.S. Participation in Newton Institute Program on Stochastic Dynamical Systems in Biology: Numerical Methods and Applications
美国参与牛顿研究所生物学随机动力系统项目:数值方法和应用
- 批准号:
1548520 - 财政年份:2016
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
CAREER: Numerical Methods for Stochastic Reaction Diffusion Equations
职业:随机反应扩散方程的数值方法
- 批准号:
1255408 - 财政年份:2013
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
Multiscale Modeling of Subcellular Structure and its Effects on Gene Expression and Regulation
亚细胞结构的多尺度建模及其对基因表达和调控的影响
- 批准号:
0920886 - 财政年份:2009
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
eMB: Collaborative Research: Fluid Dynamics and Infectious Diseases: An Integrated Modeling Framework
eMB:协作研究:流体动力学和传染病:集成建模框架
- 批准号:
2324692 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
- 批准号:
2325078 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325172 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Advancing Inference of Phylogenetic Trees and Networks under Multispecies Coalescent with Hybridization and Gene Flow
eMB:合作研究:通过杂交和基因流推进多物种合并下的系统发育树和网络的推理
- 批准号:
2325775 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325196 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant