Enabling Sulfur-Based Beyond-Lithium Metal Batteries via a Mechanistic Understanding of Advanced Hybrid Cathodes and Borate Electrolytes
通过对先进混合阴极和硼酸盐电解质的机理理解,实现硫基超锂金属电池
基本信息
- 批准号:2323065
- 负责人:
- 金额:$ 51.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Using fossil fuels to generate electricity and power transportation is the primary source of anthropogenic carbon dioxide emissions that lead to climate change. The utilization of batteries to store renewable energy, such as solar and wind, is critical to lessen dependence on nonrenewable resources. However, lithium-ion batteries used in handheld devices and electric vehicles currently use expensive and rare materials that are not produced domestically, limiting affordability and domestic supply chain security. Developing batteries with low-cost, sustainable, and domestically-sourced materials such as sodium, magnesium, or calcium could overcome these challenges, but new chemistries are needed to increase the performance of batteries based on these materials. This research aims to lead the development of next-generation battery chemistries based on these elements to support the domestic production of low-cost battery solutions that increase the competitiveness and independence of the U.S. in the renewable energy sector. Moreover, this effort promotes inclusivity and fosters the growth of future scientists and engineers in this field.Currently, beyond Li-ion batteries have limitations due to their low-capacity cathodes and poor electrolyte stability. This makes them less competitive in high-energy density applications. The aim of this project is to create affordable and high-performance beyond Li-ion batteries that can compete in the market by researching reversible electrolytes and high-capacity cathodes for these batteries. The strategy for accomplishing this ambitious goal is to leverage a combined computational and experimental approach to: 1) investigate a set of high-energy density hybrid cathodes where sulfur is chemically bound to a catalytic substrate material, 2) discover advanced electrolytes based on the tunable borate chemistry, and 3) map the various reaction mechanisms based on novel cathodes and electrolytes to their macroscopic performance, which will inform the rational discovery of superior Na, Mg, and Ca anode chemistries. This mechanistic map will be iteratively applied and refined by computationally predicting superior hybrid cathodes and borate electrolytes, characterizing their performance, and revising the mechanistic understanding.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
使用化石燃料发电和电力运输是导致气候变化的人为二氧化碳排放的主要来源。利用电池存储太阳能和风能等可再生能源对于减少对不可再生资源的依赖至关重要。然而,手持设备和电动汽车中使用的锂离子电池目前使用昂贵且稀有的材料,这些材料不是国内生产的,限制了负担能力和国内供应链安全。使用钠、镁或钙等低成本、可持续的国产材料开发电池可以克服这些挑战,但需要新的化学物质来提高基于这些材料的电池的性能。这项研究旨在引领基于这些元素的下一代电池化学材料的开发,以支持低成本电池解决方案的国内生产,从而提高美国在可再生能源领域的竞争力和独立性。此外,这一努力促进了包容性,并促进了该领域未来科学家和工程师的成长。目前,超越锂离子电池由于其低容量阴极和电解质稳定性差而存在局限性。这使得它们在高能量密度应用中的竞争力较差。该项目的目标是通过研究这些电池的可逆电解质和高容量阴极,创造出价格实惠且高性能的锂离子电池,使其能够在市场上竞争。实现这一雄心勃勃的目标的策略是利用计算和实验相结合的方法来:1)研究一组高能量密度混合阴极,其中硫以化学方式结合到催化基底材料上,2)发现基于可调谐的先进电解质硼酸盐化学,3)将基于新型阴极和电解质的各种反应机制映射到其宏观性能,这将为合理发现优质钠、镁和钙阳极化学物质提供信息。该机制图将通过计算预测优异的混合阴极和硼酸盐电解质、表征其性能并修改机制理解来迭代应用和完善。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和技术进行评估,被认为值得支持。更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHUNMEI BAN其他文献
CHUNMEI BAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
麦角硫因基于Nrf-2-CD36通路改善高脂饮食诱导小胶质细胞吞噬功能受损的机制研究
- 批准号:32372326
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于巯基-吡啶苯基砜点击反应合成可降解性含硫醚聚合物
- 批准号:22371145
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于化学生物学原理的硫代谢调控策略用于主动脉瘤治疗及机制研究
- 批准号:82330066
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
基于碳酸酯电解液溶剂化结构构筑的高比能钾硫电池储能机理研究
- 批准号:52302323
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于适配体识别和硫代修饰环介导扩增技术联用的DNA甲基化检测方法研究及其在临床精准用药中的应用
- 批准号:82373828
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Research on the fractionation process of moderately volatile elements in the early Solar System based on iron sulfide formation experiments
基于硫化铁形成实验的早期太阳系中挥发性元素分馏过程研究
- 批准号:
22KJ0568 - 财政年份:2023
- 资助金额:
$ 51.81万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Dissecting the role of mitochondrial glutathione homeostasis in cancer
剖析线粒体谷胱甘肽稳态在癌症中的作用
- 批准号:
10743695 - 财政年份:2023
- 资助金额:
$ 51.81万 - 项目类别:
Caries resistance mechanisms in high-risk Indigenous children
高危原住民儿童的防龋机制
- 批准号:
10639704 - 财政年份:2023
- 资助金额:
$ 51.81万 - 项目类别:
Estimation of volcanic gas emission rate and elucidation of magma activity based on satellite and ground-based observations with using meteorological models
利用气象模型基于卫星和地面观测估算火山气体排放率并阐明岩浆活动
- 批准号:
23K03512 - 财政年份:2023
- 资助金额:
$ 51.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sulfur Based Stem Cell Therapeutics in Necrotizing Enterocolitis
硫基干细胞治疗坏死性小肠结肠炎
- 批准号:
10659645 - 财政年份:2023
- 资助金额:
$ 51.81万 - 项目类别: