Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks

合作研究:复杂纳米纤维网络的液晶模板化学气相聚合

基本信息

  • 批准号:
    2322899
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

Research supported by this grant generates foundational knowledge needed to develop new manufacturing processes for novel polymer films, advancing both science and technology and impacting national prosperity. Chemical vapor polymerization is a process where gas phase chemical species are reacted on surfaces to create thin polymer films. Although chemical vapor polymerization has been widely adopted by industry to create polymer coatings, e.g., for the microelectronics industry, the polymer coatings have been limited to flat films. This award supports fundamental research needed to expand the capabilities of chemical vapor polymerization to large-scale manufacturing of surface coatings with tailored nanoscopic structures, including end-attached nanofiber arrays or “nanograsses”, quasi-two-dimensional networks of interconnected nanofibers or “nanosheets”, and rigid end-attached nanofibers or “bed-of-nanonails”. Potential applications for this next generation of nanostructured coatings include improved adhesives, biomedical sensors, biomaterials for growing replacement organs, and water filtration membranes. This collaborative project provides an outstanding context for the multidisciplinary training of graduate students in next-generation manufacturing processes. The project also integrates an initiative that is focused on the engagement of veteran students in advanced manufacturing research. The scientific approach underlying this project is based on a convergence of ideas from two largely disconnected fields – liquid crystals and chemical vapor polymerization. Specifically, thin films of liquid crystals supported on surfaces are used as dynamic molecular templates to guide the formation of polymeric nanostructures via chemical vapor polymerization. The latter process is achieved by thermal sublimation and pyrolysis of paracyclophanes, which subsequently polymerize into shape-controlled nanostructures templated by the liquid crystal films. The research elucidates the chemical and physical processes that control the formation of newly discovered polymeric morphologies, e.g., nanofiber sheets, that can be accessed at scale by chemical vapor polymerization into liquid crystal films. Fundamental questions regarding the role of topological defects in liquid crystal-templated chemical vapor polymerization are investigated by using multiphase liquid crystal films containing dispersions of microparticles and immiscible oil droplets. Post-synthesis processes are also explored as an approach to achieving an expanded palette of nanostructures and functional properties, e.g., the synthesis of electrically conductive and morphologically tunable nanofiber arrays prepared via post-deposition pyrolysis. Other key aspects of the research revolve around the manufacturing of functional thin films with emergent photoluminescent, electrical, and transport properties. A unifying fundamental challenge underlying the approach is understanding how the information encoded in the atomic-scale structure, e.g., chirality, of reactive monomers is amplified across spatial scales by the liquid crystal during chemical vapor polymerization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该资助支持的研究产生了开发新型聚合物薄膜的新制造工艺所需的基础知识,推动了科学技术的发展并影响了国家的繁荣。化学气相聚合是一种气相化学物质在表面发生反应以形成聚合物薄膜的过程。尽管化学气相聚合已被工业界广泛采用来制造聚合物涂层,例如用于微电子行业,但聚合物涂层仅限于平面薄膜。该奖项支持将化学气相聚合的能力扩展到大规模所需的基础研究。制造具有定制纳米结构的表面涂层,包括末端附着的纳米纤维阵列或“纳米草”、互连纳米纤维或“纳米片”的准二维网络,以及刚性末端附着的纳米纤维或“纳米指甲床”的潜在应用。下一代纳米结构涂层包括改进的粘合剂、生物医学传感器、用于生长替代器官的生物材料和水过滤膜。该项目还整合了一项旨在让资深学生参与先进制造研究的举措,该项目的科学方法基于两个基本互不相关的想法的融合。在液晶和化学气相聚合领域,表面支撑的液晶薄膜被用作动态分子模板,通过化学特别是气相聚合来引导聚合物纳米结构的形成,后者是通过热升华和热解来实现的。对环芳烷,随后聚合成以液晶薄膜为模板的形状控制的纳米结构,该研究阐明了控制新发现的聚合物形态形成的化学和物理过程,例如可以通过化学气相聚合大规模获得的纳米纤维片。通过使用含有微粒分散体的多相液晶薄膜,研究了有关液晶模板化学气相聚合中拓扑缺陷的作用的基本问题。不混溶的油滴也被探索作为实现纳米结构和功能特性的扩展调色板的方法,例如,通过后沉积热解制备的导电和形态可调的纳米纤维阵列的合成。围绕具有新兴光致发光、电学和传输特性的功能薄膜的制造,该方法背后的一个统一的基本挑战是理解信息如何编码在薄膜中。反应性单体的原子级结构(例如手性)在化学气相聚合过程中被液晶在空间尺度上放大。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Abbott其他文献

AI Framework with Computational Box Counting and Integer Programming Removes Quantization Error in Fractal Dimension Analysis of Optical Images
具有计算盒计数和整数编程功能的人工智能框架可消除光学图像分形维数分析中的量化误差
  • DOI:
    10.1016/j.cej.2022.137058
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Haoyue Liang;M. Tsuei;Nicholas Abbott;F. You
  • 通讯作者:
    F. You
Surface architecture of endospores of the Bacillus cereus/anthracis/thuringiensis family at the subnanometer scale
亚纳米尺度蜡样芽孢杆菌/炭疽菌/苏云金菌家族内生孢子的表面结构
  • DOI:
    10.1073/pnas.1109419108
  • 发表时间:
    2011-09-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Kailas;C. Terry;Nicholas Abbott;R. Taylor;N. Mullin;S. Tzokov;S. Todd;B. A. Wallace;J. Hobbs;A. Moir;P. Bullough
  • 通讯作者:
    P. Bullough

Nicholas Abbott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Abbott', 18)}}的其他基金

2023 Complex Active and Adaptive Materials Systems: Optimizing the Synergy Between Architecture, Non-Equilibrium Processes and Materials
2023 复杂的活性和自适应材料系统:优化建筑、非平衡过程和材料之间的协同作用
  • 批准号:
    2246034
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Simulations, Experiments, and Machine Learning to Understand and Design Hydrophobic Interactions
协作研究:整合模拟、实验和机器学习来理解和设计疏水相互作用
  • 批准号:
    2245376
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: SHARING THE STRAIN - SYNTHETIC LIQUID CRYSTALS AS SOFT BIOMATERIALS
合作研究:共享应变——合成液晶作为软生物材料
  • 批准号:
    2003807
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: Accelerated Design and Deployment of Metal Alloy Surfaces for Chemoresponsive Liquid Crystals
DMREF:协作研究:化学响应液晶金属合金表面的加速设计和部署
  • 批准号:
    1921722
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Manufacturing of Polymer Nanofiber Arrays on Surfaces by Chemical Vapor Deposition into Liquid Crystal Templates
合作研究:通过化学气相沉积液晶模板在表面制造聚合物纳米纤维阵列
  • 批准号:
    1916888
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
UNS: Collaborative Research: Dynamics of Active Particles in Anisotropic Fluids
UNS:合作研究:各向异性流体中活性粒子的动力学
  • 批准号:
    1852379
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Chemoresponsive Liquid Crystals Based on Metal Ion-Ligand Coordination
DMREF/合作研究:基于金属离子-配体配位的化学响应液晶
  • 批准号:
    1902683
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Data-Driven, Multi-Scale Design of Liquid Crystals for Wearable Sensors for Monitoring Human Exposure and Air Quality
大数据:IA:协作研究:用于监测人体暴露和空气质量的可穿戴传感器的数据驱动、多尺度液晶设计
  • 批准号:
    1837821
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Optically-Driven Changes in Nanoparticle Solvation, Transport and Interaction
纳米粒子溶剂化、传输和相互作用的光驱动变化
  • 批准号:
    1803409
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
2015 Liquid Crystals GRC: Liquid Crystallinity in Soft Matter at and Beyond Equilibrium
2015 液晶 GRC:软物质中的液晶性处于平衡态及超越平衡态
  • 批准号:
    1523320
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

超支化离子液体改性木塑衣架复合材料的界面设计、性能调控与机理研究
  • 批准号:
    52363014
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
磁性液体摩擦-电磁复合式发电系统的能量传递机理研究
  • 批准号:
    52307010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Kitaev型量子自旋液体材料在高压和磁场下的拉曼光谱研究
  • 批准号:
    12304044
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
离子液体促进硝解合成HMX反应机理的理论研究
  • 批准号:
    22305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高性能多孔液体吸附剂的创制及其强化天然气脱碳机理研究
  • 批准号:
    22308276
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
  • 批准号:
    2346686
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
  • 批准号:
    2346687
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
  • 批准号:
    2322900
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344490
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了