An Explanatory Machine Learning Framework for Teacher Effectiveness in STEM Education
STEM 教育中教师效能的解释性机器学习框架
基本信息
- 批准号:2321191
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to serve the national interest by developing explanatory machine learning methods for the study of teaching effectiveness in STEM education. There is consistent evidence that teachers vary widely in their effectiveness but conventional analytic methods have largely failed to explain why and under what contexts teaching and teachers vary. Explanatory machine learning methods hold significant potential in developing fundamental knowledge and theories of equitable and effective STEM teaching because they can track complex features, processes and patterns inherent in and implied by theories of teaching in ways where conventional methods fall short. In this project, we examine the extent to which we can leverage machine learning methods to identify and explain profiles, pathways and practices (e.g., who teachers are, what teachers know, what teachers believe, perceive and experience, what teachers do) that produce student learning and how these profiles and practices vary across STEM education contexts. The outcomes of this project have the potential to accelerate research on the theory and practice of effective teaching, teacher preparation, teacher development and student learning. This is a three-year BCSER: Individual Investigator Development project in STEM Education Research within Research on STEM Learning and Learning Environments.The fields of STEM education and teacher development have made substantial progress in developing sophisticated theories of teaching and learning and instruments and measures that support and operationalize research on those theories (e.g., teacher knowledge, culturally responsive teacher self-efficacy, classroom observations). Recent literature has, however, noted that there is a mismatch between the complexity found in our theories of effective teachers and teaching and the prevailing methods we use to analyze those theories. For example, theories suggest that teaching is a highly interactive, adaptive, nonlinear and context-dependent practice; yet the field has almost exclusively drawn on simple linear regression models that cannot readily detect and analyze these complex patterns. There is a growing recognition of the need to craft, develop and grow methodologies specific to the purposes of STEM teaching and learning research. This project aims to fill this gap by developing and adapting explanatory machine learning methods (e.g., neural networks) to analyze studies of teaching effectiveness and examining the extent to which these methods can predict, explain and contextualize effective teaching in ways that outperform conventional methods. The results have the potential to broadly build capacity and impact the field by identifying complex features and profiles of effective teaching within and across contexts and developing scalable machine learning methods that are broadly applicable to STEM education studies. This project is supported through a partnership with the Bill & Melinda Gates Foundation, Schmidt Futures, and the Walton Family Foundation. This project is also supported by NSF's EDU Core Research Building Capacity in STEM Education Research (ECR: BCSER) program, which is designed to build investigators' capacity to carry out high-quality STEM education research in the core areas of STEM learning and learning environments, broadening participation in STEM fields, and STEM workforce development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过开发解释性机器学习方法来研究 STEM 教育的教学效果,从而服务于国家利益。有一致的证据表明,教师的有效性差异很大,但传统的分析方法在很大程度上无法解释教学和教师为何以及在何种背景下会发生差异。解释性机器学习方法在发展公平有效的 STEM 教学的基础知识和理论方面具有巨大潜力,因为它们可以以传统方法无法达到的方式跟踪教学理论固有的和隐含的复杂特征、过程和模式。在这个项目中,我们研究了我们可以在多大程度上利用机器学习方法来识别和解释档案、路径和实践(例如,教师是谁,教师知道什么,教师相信、感知和经验什么,教师做什么),从而产生学生的学习情况以及这些概况和实践在 STEM 教育背景下有何不同。该项目的成果有可能加速有效教学、教师准备、教师发展和学生学习的理论和实践研究。这是一个为期三年的 BCSER:STEM 学习和学习环境研究中 STEM 教育研究的个人研究者发展项目。STEM 教育和教师发展领域在开发复杂的教学理论以及工具和措施方面取得了实质性进展,支持和实施对这些理论的研究(例如教师知识、文化响应式教师自我效能、课堂观察)。然而,最近的文献指出,我们有效教师和教学理论的复杂性与我们用来分析这些理论的流行方法之间存在不匹配。例如,理论认为教学是一种高度互动、适应性、非线性和情境依赖的实践;然而,该领域几乎完全采用简单的线性回归模型,这些模型无法轻松检测和分析这些复杂的模式。人们越来越认识到需要精心设计、开发和发展专门针对 STEM 教学和学习研究目的的方法。该项目旨在通过开发和调整解释性机器学习方法(例如神经网络)来分析教学有效性研究并检查这些方法能够以优于传统方法的方式预测、解释和情境化有效教学的程度,从而填补这一空白。研究结果有可能通过识别上下文内和跨上下文有效教学的复杂特征和概况,并开发广泛适用于 STEM 教育研究的可扩展机器学习方法,广泛建设能力并影响该领域。该项目得到了比尔及梅琳达·盖茨基金会、施密特期货公司和沃尔顿家族基金会的合作支持。 该项目还得到了 NSF 的 EDU STEM 教育研究核心研究能力建设(ECR:BCSER)计划的支持,该计划旨在培养研究人员在 STEM 学习和学习环境的核心领域开展高质量 STEM 教育研究的能力、扩大 STEM 领域的参与以及 STEM 劳动力发展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Kelcey其他文献
The contributors to dosage calculation ability and its applicability to nursing education: An integrative review.
剂量计算能力的贡献者及其对护理教育的适用性:综合评价。
- DOI:
10.1016/j.profnurs.2023.10.006 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:2.5
- 作者:
Jessica Westman;Kimberly D. Johnson;Carolyn R Smith;Benjamin Kelcey - 通讯作者:
Benjamin Kelcey
Educational preparedness and perceived importance on confidence in new graduate registered nurses' medication administration
教育准备和对新毕业注册护士用药管理信心的认知重要性
- DOI:
10.1016/j.profnurs.2024.06.008 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:2.5
- 作者:
Jessica Westman;Kimberly D. Johnson;Carolyn R Smith;Benjamin Kelcey - 通讯作者:
Benjamin Kelcey
Benjamin Kelcey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Kelcey', 18)}}的其他基金
Designing Multisite Mediation Studies to Track Teacher Development Processes in Mathematics
设计多站点中介研究来跟踪教师数学发展过程
- 批准号:
1760884 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: Multilevel Mediation Models to Study the Impact of Teacher Development on Student Achievement in Mathematics
职业:多层次中介模型研究教师发展对学生数学成绩的影响
- 批准号:
1552535 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Power Analyses for Moderator and Mediator Effects in Cluster Randomized Trials
协作研究:集群随机试验中调节剂和中介效应的功效分析
- 批准号:
1437679 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Empirical Benchmarks of Design Parameters for Group Randomized Trials in Teacher Professional Development Intervention Studies
教师专业发展干预研究中分组随机试验设计参数的实证基准
- 批准号:
1405601 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Empirical Benchmarks of Design Parameters for Group Randomized Trials in Teacher Professional Development Intervention Studies
教师专业发展干预研究中分组随机试验设计参数的实证基准
- 批准号:
1228490 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
基于信息流理论与可解释性机器学习的北方岩溶泉水流量动态变化机理研究
- 批准号:42307088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于样本迁移和可解释性机器学习的草本湿地植物群落分类研究
- 批准号:42301429
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于机器学习方法的三维气象干旱事件识别分类与可解释性统计模拟
- 批准号:42205191
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
面向核酸结合蛋白的可解释性机器学习模型研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
融合物理规律的混凝土构件性能预测可解释性机器学习模型研究
- 批准号:
- 批准年份:2022
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Leveraging Machine Learning to Examine Engineering Students Self-selection in Entrepreneurship Education Programs
利用机器学习检查工科学生在创业教育项目中的自我选择
- 批准号:
2321175 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
- 批准号:
2340194 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
The Datafied Animal: Biologging, Machine Learning and Wildlife Conservation
数据化动物:生物记录、机器学习和野生动物保护
- 批准号:
2341898 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
XTRIPODS: Algorithms and Machine Learning in Data Intensive Models
XTRIPODS:数据密集型模型中的算法和机器学习
- 批准号:
2342527 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
ERI: A Machine Learning Framework for Preventing Cracking in Semiconductor Materials
ERI:防止半导体材料破裂的机器学习框架
- 批准号:
2347035 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant