Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance

协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能

基本信息

  • 批准号:
    2319781
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Federated learning (FL) is a distributed framework proposed for training machine learning (ML) models on mobile devices in Next Generation (NextG) wireless communication systems. Hierarchical federated learning (HFL) is an architecture that shows promise in enabling FL over wireless networks. However, existing research on HFL falls short in effectively addressing the challenges posed by the NextG communication environment, such as high user and edge server density, diverse edge server deployments, and overlapping wireless coverage. To tackle these challenges, this project aims to investigate resource allocation problems in HFL, focusing on selecting mobile clients to participate in HFL, associating them with edge servers, and allocating sufficient bandwidth under these demanding conditions. The successful completion of the proposed framework has the potential in transforming the deployment and operation of NextG systems and will provide support for a wide range of ML-powered applications and services. The primary objective in designing the performance of HFL over wireless networks is to optimize the overall training time required for convergence. This can be achieved by minimizing the time duration of each HFL round through efficient allocation of wireless bandwidth to each client (the bandwidth allocation problem). However, due to high client density, limited wireless spectrum, and mobility, not all clients may be able to participate in every round. This leads to the need to determine which clients should participate in each round (the client selection problem) and which clients should be associated with which edge server given the overlapping wireless coverage and presence of multiple providers (the client association problem). To address these challenges, the project focuses on three key research areas: (i) designing short-term bandwidth allocation for HFL under highly dense and heterogeneous deployments, (ii) developing a long-term optimization framework to solve user selection and association for HFL, and (iii) improving HFL under the emerging scenario in which a mobile client can be associated with multiple edge servers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
联邦学习 (FL) 是一种分布式框架,旨在用于在下一代 (NextG) 无线通信系统中的移动设备上训练机器学习 (ML) 模型。分层联合学习 (HFL) 是一种有望通过无线网络实现 FL 的架构。然而,现有的 HFL 研究未能有效解决 NextG 通信环境带来的挑战,例如用户和边缘服务器密度高、边缘服务器部署多样化以及无线覆盖重叠等。为了应对这些挑战,该项目旨在研究HFL中的资源分配问题,重点是选择移动客户端参与HFL,将它们与边缘服务器关联,并在这些苛刻条件下分配足够的带宽。拟议框架的成功完成有可能改变 NextG 系统的部署和操作,并将为广泛的 ML 支持的应用程序和服务提供支持。设计无线网络上 HFL 性能的主要目标是优化收敛所需的总体训练时间。这可以通过向每个客户端有效分配无线带宽(带宽分配问题)来最小化每个 HFL 轮的持续时间来实现。然而,由于客户端密度高、无线频谱有限和移动性,并非所有客户端都能够参与每一轮。这导致需要确定哪些客户端应该参与每一轮(客户端选择问题),以及哪些客户端应该与哪个边缘服务器关联(考虑到重叠的无线覆盖范围和多个提供商的存在)(客户端关联问题)。为了应对这些挑战,该项目重点关注三个关键研究领域:(i) 设计高密度和异构部署下 HFL 的短期带宽分配,(ii) 开发长期优化框架来解决 HFL 的用户选择和关联问题,以及 (iii) 在移动客户端可以与多个边缘服务器关联的新兴场景下改进 HFL。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhuo Lu其他文献

Warmonger: Inflicting Denial-of-Service via Serverless Functions in the Cloud
好战者:通过云中的无服务器功能造成拒绝服务
Construction of a two-dimensional-VWOOC based on time domain/frequency domain optical CDMA system
基于时域/频域光CDMA系统的二维VWOOC构建
  • DOI:
    10.1007/s11801-020-0024-z
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Zhuo Lu;Ye Lu;Chuanqi Li;Peng Zhou
  • 通讯作者:
    Peng Zhou
Design of the Periodic Training Sequence for Joint Channel and Frequency Estimation in MIMO Frequency-Selective Channels
MIMO频率选择性信道中联合信道和频率估计的周期训练序列设计
  • DOI:
    10.1007/s00034-006-0425-7
  • 发表时间:
    2007-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuo Lu;Jiandong Li;Linjing Zhao;Liang Chen
  • 通讯作者:
    Liang Chen
On detection and concealment of critical roles in tactical wireless networks
战术无线网络中关键角色的检测和隐藏
Measurement Integrity Attacks Against Network Tomography: Feasibility and Defense
针对网络断层扫描的测量完整性攻击:可行性和防御

Zhuo Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhuo Lu', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Understanding the Limitations of Wireless Network Security Designs Leveraging Wireless Properties: New Threats and Defenses in Practice
协作研究:SaTC:核心:小型:了解利用无线特性的无线网络安全设计的局限性:实践中的新威胁和防御
  • 批准号:
    2316719
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
  • 批准号:
    2320973
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: A Comprehensive Training Program of AI for 5G and NextG Wireless Network Security
合作研究:SaTC:EDU:5G 和 NextG 无线网络安全人工智能综合培训项目
  • 批准号:
    2321270
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Wireless Networking Designs for Efficiency and Security
职业:数据驱动的无线网络设计以提高效率和安全性
  • 批准号:
    2044516
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Pilot: Interdisciplinary Training of Data-Centric Security and Resilience of Cyber-Physical Energy Infrastructures
合作研究:网络培训:试点:以数据为中心的网络物理能源基础设施安全性和弹性的跨学科培训
  • 批准号:
    2017194
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking
合作研究:SWIFT:SMALL:理解和对抗对抗性频谱学习以实现频谱高效的无线网络
  • 批准号:
    2029875
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Interdisciplinary Training of Data-Centric Security and Resilience of Cyber-Physical Energy Infrastructures
合作研究:网络培训:试点:以数据为中心的网络物理能源基础设施安全性和弹性的跨学科培训
  • 批准号:
    2017194
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Towards Secure and Reliable Network Tomography in Wireline and Wireless Networks
SaTC:核心:小型:在有线和无线网络中实现安全可靠的网络层析成像
  • 批准号:
    1717969
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CRII: NeTS: A Proactive Perspective on Preventing Network Inference: Shifting from Optimized to Dynamic Wireless Network Design
CRII:NeTS:防止网络推理的主动视角:从优化到动态无线网络设计的转变
  • 批准号:
    1701394
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
CRII: NeTS: A Proactive Perspective on Preventing Network Inference: Shifting from Optimized to Dynamic Wireless Network Design
CRII:NeTS:防止网络推理的主动视角:从优化到动态无线网络设计的转变
  • 批准号:
    1464114
  • 财政年份:
    2015
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332173
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332172
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
  • 批准号:
    2242700
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
  • 批准号:
    2401415
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了