CRII: III: Explainable Artificial Intelligence for Biodiversity Science & Conservation
CRII:III:生物多样性科学的可解释人工智能
基本信息
- 批准号:2426835
- 负责人:
- 金额:$ 17.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Extinction of biological species is accelerating rapidly. Significant uncertainty is often involved in predicting the extinction or population decline of species, even with high-resolution information. Changes in the taxonomic classification of biological species is a key challenge that impacts both biodiversity conservation and policy decisions. The taxonomy is described in words and these words provide an opportunity to use natural language processing and machine learning (ML) to clarify species relationships and provide novel insights into extinction risk by addressing the variability in species taxonomy. Developing an accurate and scalable machine learning and artificial intelligence (ML/AI) for “taxonomic intelligence” can help support the robustness of conservation decision making. This is important because the taxonomic classification can move a group of organisms in or out of consideration for legal protection. AI can help in this classification and support coordination of conservation projects.The goal of this project is to develop AI/ML techniques to provide novel insights into extinction risk, by projecting different contingent outcomes for species distributions and risks under different taxonomic perspectives. It is critical that the derived insights be understandable to humans, to safely translate these outcomes into operational recommendations. Biodiversity data, which include taxonomical and geospatial data, pose unique challenges to AI in that they are heterogeneous, structurally complex, and frequently change. This project aims to address these challenges with a novel approach combining Natural Language Processing (NLP) from the textual data of relevant scientific publications, and automated inductive and deductive reasoning, including qualitative spatial reasoning incorporating the taxonomic factor and relevant domain structures, for discovery of human-understandable knowledge for conservation biology applications. In doing so, this project also has the potential to advance AI beyond a single application domain. The research activities to be undertaken in this award include data and knowledge curation with the help of domain experts, and the development and evaluation of the aforementioned AI techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物物种的灭绝正在迅速加速。 IES的关系因物种分类法的变化而灭绝。或出于法律保护的考虑。可以理解的是,将结果转化为空间数据。包括定性的空间推理,结合了分类学因素和相关领域结构,在这样做的情况下,人类融合了保护生物学应用程序,可以借助域名的数据和知识范围。以及对上述AI技术的发展和评估。该奖项反映了NSF的Beend Demed值得支持Thalugh评估,并使用基金会的UAL功绩和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Atriya Sen其他文献
On Logicist Agent-Based Economics ?
基于逻辑主义代理的经济学?
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
S. Bringsjord;John Licato;Atriya Sen;Joe Johnson;Alexander Bringsjord;Joshua Taylor - 通讯作者:
Joshua Taylor
Ethical Operating Systems
道德操作系统
- DOI:
10.1007/978-3-319-97226-8_8 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Naveen Sundar Govindarajulu;S. Bringsjord;Atriya Sen;Jean;K. O'Neill - 通讯作者:
K. O'Neill
Atriya Sen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Atriya Sen', 18)}}的其他基金
CRII: III: Explainable Artificial Intelligence for Biodiversity Science & Conservation
CRII:III:生物多样性科学的可解释人工智能
- 批准号:
2246032 - 财政年份:2023
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
相似国自然基金
深水重力流混合事件层的碎屑黏土驱动成因机制及其沉积动力过程响应—以西秦岭卓尼地区上三叠统为例
- 批准号:42372118
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
摇摆桥梁三维动力学行为及地震响应规律研究
- 批准号:52308494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于瞬态成像响应的非同步相移轮廓术三维测量方法研究
- 批准号:62375078
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
高精度OFDR分布式螺旋多芯光纤三维形状传感技术
- 批准号:62375178
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
构件复杂背景下的实景三维古建筑物细节多层次语义提取方法研究
- 批准号:62306107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: III: Explainable Artificial Intelligence for Biodiversity Science & Conservation
CRII:III:生物多样性科学的可解释人工智能
- 批准号:
2246032 - 财政年份:2023
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
CRII: III: Robust and Explainable AI Agents with Common Sense
CRII:III:具有常识的鲁棒且可解释的人工智能代理
- 批准号:
2153546 - 财政年份:2022
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
CRII: III: Explainable Multi-Source Data Integration with Uncertainty
CRII:III:具有不确定性的可解释多源数据集成
- 批准号:
2153171 - 财政年份:2022
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
III: Small: RareXplain: A Computational Framework for Explainable Rare Category Analysis
III:小:RareXplain:可解释稀有类别分析的计算框架
- 批准号:
2117902 - 财政年份:2021
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Scrutable and Explainable Information Retrieval with Model Intrinsic and Agnostic Approaches
III:小:协作研究:使用模型内在和不可知的方法进行可查和可解释的信息检索
- 批准号:
2007398 - 财政年份:2020
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant