Non-parametric estimation under covariate shift: From fundamental bounds to efficient algorithms

协变量平移下的非参数估计:从基本界限到高效算法

基本信息

  • 批准号:
    2311072
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Machine learning (ML) methods for large-scale prediction have had dramatic impacts on various branches of science and engineering over the past decade. However, these methods --- when they are used on data sets that differ from the training data --- are often reported to be unstable, or to fail in mysterious ways. Failures of this type --- and our lack of understanding of their root causes --- pose a major roadblock to the adoption of modern ML methods in high-stake settings, where the cost of failure might be significant (e.g., self-driving cars, financial risk assessments, medical diagnoses). The goal of this research project is to characterize the fundamental causes of such failures, and to develop new algorithms that mitigate these issues. The project will also integrate research and education through: (a) the involvement of both undergraduate and graduate students in the research and in the dissemination of research results; (b) the inclusion of the research results in courses at MIT and in the web-based course materials, which are accessed from other universities; and (c) short courses at summer schools and workshops. The project will also support mentoring graduate students and postdocs that are under-represented in the STEM fields, with continued professional support in their careers.In more detail, the research focuses on the challenge of covariate shift, in which the distribution of the feature vectors used to train a large-scale prediction model differ from those on which it is evaluated. An initial goal is to characterize fundamental limits and develop efficient algorithms for estimation under covariate shift, in the finite-sample non-asymptotic setting. Armed with such an understanding, a follow-up goal is to develop computationally efficient procedures that achieve the fundamental limits along with theoretical understanding of their behavior. The work in this project will leverage and build upon techniques and tools from non-parametric analysis, empirical process theory, concentration of measure, reproducing kernel Hilbert spaces, and information theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
过去十年,用于大规模预测的机器学习(ML)方法对科学和工程的各个分支产生了巨大影响。 然而,这些方法——当它们用于与训练数据不同的数据集时——经常被报道不稳定,或者以神秘的方式失败。 这种类型的失败——以及我们对其根本原因缺乏了解——对在高风险环境中采用现代机器学习方法构成了主要障碍,在这些环境中,失败的成本可能会很高(例如,自动驾驶)汽车、金融风险评估、医疗诊断)。 该研究项目的目标是找出此类故障的根本原因,并开发新的算法来缓解这些问题。该项目还将通过以下方式整合研究和教育: (a) 让本科生和研究生参与研究和传播研究成果; (b) 将研究成果纳入麻省理工学院的课程和网络课程材料中,这些材料可从其他大学获取; (c) 暑期学校和讲习班的短期课程。该项目还将支持指导 STEM 领域代表性不足的研究生和博士后,并在他们的职业生涯中提供持续的专业支持。更详细地说,该研究重点关注协变量转变的挑战,其中特征向量的分布用于训练大规模预测模型的模型与评估模型的模型不同。 最初的目标是在有限样本非渐近设置中表征基本极限并开发协变量移位下的有效估计算法。 有了这样的理解,后续目标是开发计算高效的程序,以实现基本限制以及对其行为的理论理解。 该项目的工作将利用和建立在非参数分析、经验过程理论、测量集中、再现核希尔伯特空间和信息论等技术和工具的基础上。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Wainwright其他文献

An Analysis of Convex Relaxations for MAP Estimation of Discrete MRFs
离散MRF MAP估计的凸松弛分析
  • DOI:
    10.5555/1577069.1577072
  • 发表时间:
    2009-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Pawan Kumar;V. Kolmogorov;P. Torr;Martin Wainwright;Pawan Kumar;Philip H S Torr Kumar
  • 通讯作者:
    Philip H S Torr Kumar

Martin Wainwright的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Wainwright', 18)}}的其他基金

Iterative Algorithms for Statistics: From Convergence Rates to Statistical Accuracy
统计迭代算法:从收敛率到统计准确性
  • 批准号:
    2301050
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Iterative Algorithms for Statistics: From Convergence Rates to Statistical Accuracy
统计迭代算法:从收敛率到统计准确性
  • 批准号:
    2015454
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Iterative Algorithms for Statistics: From Convergence Rates to Statistical Accuracy
统计迭代算法:从收敛率到统计准确性
  • 批准号:
    2015454
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Statistical Estimation in Resource-Constrained Environments: Computation, Communication and Privacy
资源受限环境中的统计估计:计算、通信和隐私
  • 批准号:
    1612948
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: New Approaches to Robustness in High-Dimensions
CIF:中:协作研究:高维鲁棒性的新方法
  • 批准号:
    1302687
  • 财政年份:
    2013
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Sparse and structured networks: Statistical theory and algorithms
稀疏和结构化网络:统计理论和算法
  • 批准号:
    1107000
  • 财政年份:
    2011
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
CAREER: Novel Message-Passing Algorithms for Distributed Computation in Graphical Models: Theory and Applications in Signal Processing
职业:图形模型中分布式计算的新型消息传递算法:信号处理中的理论与应用
  • 批准号:
    0545862
  • 财政年份:
    2006
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于非参数估计和局部识别的中国收入流动性研究
  • 批准号:
    72303025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单调性约束下非参数估计与生存分析模型的统计推断
  • 批准号:
    12371275
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
非平坦环境下SINS/DVL海底参数自主估计与广域导航方法研究
  • 批准号:
    62303157
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于智能信号参数估计的雷达卫星星座非平稳舰船多维多域成像研究
  • 批准号:
    62301191
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
工业智能低碳转型背景下的非参数随机前沿模型建模、估计与生产效率分析
  • 批准号:
    72303074
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A shape-constrained approach for non-parametric variance estimation for Markov Chains
马尔可夫链非参数方差估计的形状约束方法
  • 批准号:
    2311141
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Non-parametric identification, estimation and inference: generalized functions approach
非参数识别、估计和推理:广义函数方法
  • 批准号:
    RGPIN-2020-05444
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Discovery Grants Program - Individual
Non-parametric identification, estimation and inference: generalized functions approach
非参数识别、估计和推理:广义函数方法
  • 批准号:
    RGPIN-2020-05444
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Discovery Grants Program - Individual
Non-parametric identification, estimation and inference: generalized functions approach
非参数识别、估计和推理:广义函数方法
  • 批准号:
    RGPIN-2020-05444
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Discovery Grants Program - Individual
Non-parametric identification, estimation and inference: generalized functions approach
非参数识别、估计和推理:广义函数方法
  • 批准号:
    RGPIN-2020-05444
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了