NSF-SNSF: ULTRA: Ubiquitous Large InTelligent ArRAys

NSF-SNSF:ULTRA:无处不在的大型智能阵列

基本信息

  • 批准号:
    2403511
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

The massive amount of available bandwidth at millimeter-wave (mm-wave) and terahertz (THz) frequencies is gaining increasing interest for next-generation communications and sensing systems. At these frequencies, multi-antenna transceiver (TRX) arrays are key in overcoming the high path-loss and boosting the signal-to-noise ratio, critical for maintaining robust communications. Unlike single-antenna systems, designing large multi-antenna arrays entails significant challenges due to (i) mismatches and non-idealities, and (ii) the large number of control parameters. Existing arrays mostly rely on look-up-tables (LUTs) and offline compensation. Such static solutions, however, can neither capture all possible operation modes nor provide real-time adaptivity to the propagation conditions and communications/sensing tasks. This collaborative research project with Swiss researchers at ETH Zürich will result in novel intelligent large-scale multi-antenna array architectures with highly reconfigurable 140 GHz frontends. Unlike today's systems that are blind to imbalances and mismatches in the array, or only make static corrections, employing detectors and adaptive array calibration/beamforming will result in an adaptive array, thus performing better as conditions evolve, and lowering the cost to calibrate a large array. The research will directly impact applications in beyond-5G and 6G communications, sub-mm-wave radar, and next-generation satellite/intersatellite links. To disseminate research results, the project will provide open access to the array models, array calibration/beamforming codes, and array demonstration measurements.The ULTRA (Ubiquitous Large inTelligent arRAys) project aims at addressing large-array design challenges with a holistic approach that jointly considers mm-wave electronics, antenna arrays, digital baseband processing, and calibration algorithms. The main objective is to design large and scalable array architectures at D-band 140GHz with intelligent calibration as well as adaptive in-field beamforming. The work is divided in several thrusts, including Analytical and Behavior Modeling of Non-idealities in Large Scalable Arrays, Designing Reconfigurable D-Band Frontends as Performance Tuning "Knobs", Designing Non-Intrusive D-Band Frontends Performance "Sensors", Blind Array Calibration and Beamforming Algorithms, and ULTRA 140-GHz Array System Integration and Demonstration. Both beam-independent non-idealities (e.g., phase/gain/power mismatches) and beam-dependent non-idealities (e.g., antenna coupling/crosstalk) will be modeled. For array antenna load compensation, a reconfigurable load-modulated-balanced-amplifier transmitter and a Marchand balun receiver with non-foster terminations will be investigated. D-band orthogonal phase/gain tuning blocks will also be explored. Non-intrusive in-situ real-power and impedance detectors will be used to detect antenna mismatches/coupling (beam-dependent non-idealities). Transmitter/receiver (TX/RX) loopbacks will measure gain/phase/power mismatches (beam-independent non-idealities) in array elements. Signal processing and machine learning algorithms for blind, on-the-fly array calibration and residual impairment compensation will be pursued. Digital beamforming methods that adapt their key parameters to the instantaneous channel conditions and calibration/beamforming algorithms will be implemented on field-programmable gate array (FPGA) prototyping boards to interface with the D-band TRX array for offline/online close-loop operation of the ULTRA system. This collaborative U.S.-Swiss project is supported by the U.S. National Science Foundation (NSF) and the Swiss National Science Foundation (SNSF), where NSF funds the U.S. investigator and SNSF funds the partners in Switzerland.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
毫米波(MM-WAVE)和Terahertz(THZ)频率的大量可用带宽正在引起下一代通信和传感系统的兴趣。在这些频率下,多Aantenna收发器(TRX)阵列是克服高路径损失并提高信号噪声比率的关键,这对于保持稳健的通信至关重要。与单人体系统不同,设计大型的多安顿阵列构成了(i)不匹配和非理想性以及(ii)大量控制参数而面临的重大挑战。现有阵列主要依靠查找表(LUTS)和离线补偿。但是,这种静态解决方案可以捕获所有可能的操作模式,也可以对传播条件和通信/传感任务提供实时适应性。与苏黎世Eth瑞士研究人员的合作研究项目将导致新颖的智能大规模多安特纳阵列体系结构,具有高度可重构的140 GHz前端。与当今对阵列中的失衡和不匹配的系统不同,或者仅进行静态校正,采用探测器和自适应阵列校准/波束形成将导致自适应阵列,从而随着条件演化而表现更好,并降低了校准大阵列的成本。这项研究将直接影响超出5G和6G通信,次级波雷达和下一代卫星/横跨链路的应用。为了散布研究结果,该项目将为阵列模型,阵列校准/波束形成代码和阵列演示测量值提供开放访问。主要目的是在D波段140GHz上设计大型且可扩展的阵列架构,并具有智能校准以及自适应的场内光束成形。这项工作分为几个推力,包括对大型可扩展阵列中非理想性的分析和行为建模,设计可重新配置的D波段前端,作为性能调整“旋钮”,设计非侵入性的D波段前端性能“传感器”,盲人阵列校准和光束Algorith和Ellgora 140-Ghz Systems集成和演示。将建模两种非理想性(例如相/增益/功率不匹配)和梁依赖性的非理想性(例如,天线耦合/串扰)的非理想性。对于阵列天线载荷补偿,将研究可重新配置的负载负载平衡的放大器发射器和具有非固定终止的Marchand Balun接收器。还将探索D波段正交相/增益调音块。非侵入性的原位实际功率和阻抗探测器将用于检测天线不匹配/耦合(梁依赖性非理想性)。发射器/接收器(TX/RX)环回阵列将测量阵列元素中的增益/相/功率不匹配(非依赖于光束无关的非理想性)。信号处理和机器学习算法将用于盲人,直立阵列校准和残留损伤补偿。将其关键参数调整到瞬时通道条件以及校准/波束形成算法的数字波束形成方法将在野外可编程的门阵列(FPGA)原型板上实现,以与D-Band TRX阵列接口,以进行离线/在线关闭Ultra System的离线近距离操作。这个合作的美国 - 西威斯项目得到了美国国家科学基金会(NSF)和瑞士国家科学基金会(SNSF)的支持,NSF资助了美国调查员和SNSF为瑞士的合作伙伴提供资金。该奖项反映了NSF的法规使命,并通过评估通过基金会的知识分子和广泛的评估来诚实地进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ali Niknejad其他文献

On gate leakage current partition for MOSFET compact model
  • DOI:
    10.1016/j.sse.2006.09.016
  • 发表时间:
    2006-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jayson Hu;Xuemei Xi;Ali Niknejad;Chenming Hu
  • 通讯作者:
    Chenming Hu

Ali Niknejad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ali Niknejad', 18)}}的其他基金

ACED Fab: 240-GHz Energy-Efficient CMOS MIMO Radar
ACED Fab:240GHz 节能 CMOS MIMO 雷达
  • 批准号:
    2314969
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RINGS: Wideband NextG Tb/s mm-Wave Communication and Networking
RINGS:宽带 NextG Tb/s 毫米波通信和网络
  • 批准号:
    2148021
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
SWIFT: Interference Mitigation using Spatial and Frequency Nulling for Wideband mm-Wave Transceivers
SWIFT:使用宽带毫米波收发器的空间和频率归零来减轻干扰
  • 批准号:
    2128558
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
A Multimodal CMOS Platform for Electromagnetic-Based Tissue Treatment and Dynamic Imaging Using Terahertz Spectroscopy
使用太赫兹光谱进行基于电磁的组织治疗和动态成像的多模态 CMOS 平台
  • 批准号:
    1916743
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
An Interferometric CMOS DC-Terahertz Lab on a Chip Biosensor
干涉测量 CMOS DC-太赫兹芯片生物传感器实验室
  • 批准号:
    1608958
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: EARS: Broadband Mobile Wireless Access Using mm-Waves Bands Beyond 100 GHz
合作研究:EARS:使用超过 100 GHz 的毫米波频段的宽带移动无线接入
  • 批准号:
    1547440
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Wireless Chip-to-Chip Communication: Terahertz Short Range
无线芯片间通信:太赫兹短程
  • 批准号:
    1201755
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Exploration of THz CMOS for Imaging Applications
太赫兹 CMOS 成像应用探索
  • 批准号:
    0702037
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似海外基金

NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
  • 批准号:
    2401047
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF-SNSF: Crack Path Prediction and Control in Nonlinearly Viscoelastic Materials: in-silico to Experiments with Viscoelastic and Tough Hydrogels
NSF-SNSF:非线性粘弹性材料中的裂纹路径预测和控制:粘弹性和坚韧水凝胶的计算机实验
  • 批准号:
    2403592
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSF-SNSF: Dynamics of the Earth's core under the plesio-geostrophy paradigm
NSF-SNSF:准地转范式下的地核动力学
  • 批准号:
    2401254
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NNCI: Stanford University - SNSF, SNF, MAF, EMF
NNCI:斯坦福大学 - SNSF、SNF、MAF、EMF
  • 批准号:
    1542152
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了