Conference: Arithmetic, Birational Geometry, and Moduli

会议:算术、双有理几何和模

基本信息

  • 批准号:
    2309181
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

This award provides support for the conference "Arithmetic, Birational Geometry, and Moduli Spaces" held at Brown University onJune 12-16, 2023. The conference will connect established experts, early career researchers, and graduate students working in algebraic geometry. Its goals are to encourage collaboration across sub-disciplines within the field and to foster an environment where people at all career stages may interact productively. A poster session will highlight achievements of graduate students and postdocs. Results of the meeting will be disseminated through live-streaming and video archives of lectures. The conference website is https://sites.google.com/view/abgms2023/The technical focus of the meeting will be resolution of singularities and semistable reduction. Resolution refers to the replacement of singular algebraic varieties with smooth models by repeated blowings up. Semistable reduction is the closely related process of finding mildly singular limits of degenerating families of algebraic varieties. These are fundamental tools for constructing birational models and boundary limits in moduli spaces. New tools like algebraic stacks, non-archimedean geometry, logarithmic geometry, and tropical geometry are driving progress on these questions. Novel, stronger forms of resolution and semistable reduction are appearing, even as the proofs of existing results become simpler. These developments offer a deeper understanding of long-standing arithmetic problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brendan Hassett其他文献

Variétés rationnellement connexes : aspects géométriques et arithmétiques
各种理性联系:几何和算术方面
  • DOI:
    10.1016/0021-8693(91)90255-7
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    L. Bonavero;Brendan Hassett;J. M. Starr;Olivier Wittenberg
  • 通讯作者:
    Olivier Wittenberg
Algebraic Geometry: Salt Lake City 2015
  • DOI:
    10.1090/pspum/097.1
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Fernex;Brendan Hassett;M. Mustaţă;Martin Olsson;M. Popa;Richard P. Thomas
  • 通讯作者:
    Richard P. Thomas

Brendan Hassett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brendan Hassett', 18)}}的其他基金

Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
  • 批准号:
    1929284
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Rationality and Irrationality in Families of Varieties
品种族中的理性与非理性
  • 批准号:
    1701659
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Descent, rational points, and the geometry of moduli spaces
下降、有理点和模空间的几何
  • 批准号:
    1551514
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
  • 批准号:
    1439786
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Descent, rational points, and the geometry of moduli spaces
下降、有理点和模空间的几何
  • 批准号:
    1401764
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
  • 批准号:
    0931908
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Arithmetic and geometry of rational curves on K3 surfaces
FRG:协作研究:K3 曲面上有理曲线的算术和几何
  • 批准号:
    0968349
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Birational geometry, symplectic varieties, and moduli spaces
双有理几何、辛簇和模空间
  • 批准号:
    0901645
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
  • 批准号:
    0554491
  • 财政年份:
    2006
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Algebraic Geometry of Moduli Spaces
职业:模空间的代数几何
  • 批准号:
    0134259
  • 财政年份:
    2002
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

整体域及其上阿贝尔簇相关算术对象的变化规律研究
  • 批准号:
    12371013
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
随机整数与随机排列的因子分布和Smith矩阵算术性质的研究
  • 批准号:
    12371333
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
代数几何和算术几何中的Hodge理论与Higgs丛理论
  • 批准号:
    12331002
  • 批准年份:
    2023
  • 资助金额:
    193 万元
  • 项目类别:
    重点项目
超奇异阿贝尔簇的算术理论
  • 批准号:
    12271410
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
模形式与四元代数的算术及其在三元二次型方面的应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
カラビ・ヤウ多様体の錐予想について
关于Calabi-Yau流形的锥猜想
  • 批准号:
    21J10242
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Study of arithmetic duality using the rational etale site
利用有理数位点研究算术对偶性
  • 批准号:
    18J00415
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Relationship between the geometric properties of hyperbolic algebraic curves and the group-theoretic properties of the arithmetic fundamental groups of curves
双曲代数曲线的几何性质与算术基本曲线群的群论性质之间的关系
  • 批准号:
    24540016
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability and Arithmetic Gormetry
稳定性和算术几何学
  • 批准号:
    23340009
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了